Skip to main content
Log in

Multiscale methods for model order reduction of non-linear multiphase flow problems

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Numerical simulations for flow and transport in subsurface porous media often prove computationally prohibitive due to property data availability at multiple spatial scales that can vary by orders of magnitude. A number of model order reduction approaches are available in the existing literature that alleviate this issue by approximating the solution at a coarse scale preserving fine scale features. We attempt to present a comparison between two such model order reduction techniques, namely (1) adaptive numerical homogenization and (2) generalized multiscale basis functions. We rely upon a non-linear, multi-phase, black-oil model formulation, commonly encountered in the oil and gas industry, as the basis for comparing the aforementioned two approaches. An expanded mixed finite element formulation is used to separate the spatial scales between non-linear, flow, and transport problems. A numerical benchmark is setup using fine scale property information from the 10th SPE comparative project dataset for the purpose of comparing accuracies of these two schemes. An adaptive criterion is employed by both the schemes for local enrichment that allows us to preserve solution accuracy compared to the fine scale benchmark problem. The numerical results indicate that both schemes are able to adequately capture the fine scale features of the model problem at hand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aarnes, J.E.: On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. Multiscale Model. Simul. 2(3), 421–439 (2004)

    Article  Google Scholar 

  2. Aarnes, J.E., Efendiev, Y.: An adaptive multiscale method for simulation of fluid flow in heterogeneous porous media. Multiscale Model. Simul. 5(3), 918–939 (2006)

    Article  Google Scholar 

  3. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

    Article  Google Scholar 

  4. Amaziane, B., Antontsev, S, Pankratov, L., Piatnitski, A.: Homogenization of immiscible compressible two-phase flow in porous media: application to gas migration in a nuclear waste repository. Multiscale Model. Simul. 8(5), 2023–2047 (2010)

    Article  Google Scholar 

  5. Amaziane, B., Bourgeat, A., Jurak, M.: Effective macrodiffusion in solute transport through heterogeneous porous media. Multiscale Model. Simul. 5(1), 184–204 (2006)

    Article  Google Scholar 

  6. Amaziane, B., Pankratov, L., Piatnitski, A.: Homogenization of immiscible compressible two-phase flow in highly heterogeneous porous media with discontinuous capillary pressures. Math. Models Methods Appl. Sci. 24 (07), 1421–1451 (2014)

    Article  Google Scholar 

  7. Arbogast, T., Pencheva, G., Wheeler, M.F., Yotov, I.: A multiscale mortar mixed finite element method. Multiscale Model. Simul. 6(1), 319–346 (2007)

    Article  Google Scholar 

  8. Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic analysis for periodic structures, volume 5. North-Holland Publishing Company, Amsterdam (1978)

    Google Scholar 

  9. Bourgeat, A.: Homogenized behavior of two-phase flows in naturally fractured reservoirs with uniform fractures distribution. Comput. Methods Appl. Mech. Eng. 47(1-2), 205–216 (1984)

    Article  Google Scholar 

  10. Chan, H.Y., Chung, E., Efendiev, Y.: Adaptive mixed gmsfem for flows in heterogeneous media. Numer. Math. Theory Methods Appl. 9(4), 497–527 (2016)

    Article  Google Scholar 

  11. Chen, Y., Durlofsky, L.J., Gerritsen, M., Wen, X.-H.: A coupled local–global upscaling approach for simulating flow in highly heterogeneous formations. Adv. Water Resour. 26(10), 1041–1060 (2003)

    Article  Google Scholar 

  12. Chen, Z., Hou, T.: A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comput. 72(242), 541–576 (2003)

    Article  Google Scholar 

  13. Christie, M.A., Blunt, M.J.: Tenth spe comparative solution project: a comparison of upscaling techniques. SPE Reservoir Evaluation and Engineering 4(04), 308–317 (2001)

    Article  Google Scholar 

  14. Chung, E., Efendiev, Y., Hou, T.Y.: Adaptive multiscale model reduction with generalized multiscale finite element methods. J. Comput. Phys. 320, 69–95 (2016)

    Article  Google Scholar 

  15. Chung, E.T., Efendiev, Y., Lee, C.S.: Mixed generalized multiscale finite element methods and applications. Multiscale Model. Simul. 13(1), 338–366 (2015)

    Article  Google Scholar 

  16. Chung, E.T., Leung, W.T., Vasilyeva, M., Wang, Y.: Multiscale model reduction for transport and flow problems in perforated domains. J. Comput. Appl. Math. 330, 519–535 (2018)

    Article  Google Scholar 

  17. Durlofsky, L.J.: Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water Resour. Res. 27(5), 699–708 (1991)

    Article  Google Scholar 

  18. Efendiev, Y., Galvis, J., Hou, T.Y.: Generalized multiscale finite element methods (gmsfem). J. Comput. Phys. 251, 116–135 (2013)

    Article  Google Scholar 

  19. Gong, B., Karimi-Fard, M., Durlofsky, L.J., et al.: An upscaling procedure for constructing generalized dual-porosity/dual-permeability models from discrete fracture characterizations. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2006)

  20. Hou, T.Y., Wu, X.-H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997)

    Article  Google Scholar 

  21. Jenny, P., Lee, S.H., Tchelepi, H.A.: Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187(1), 47–67 (2003)

    Article  Google Scholar 

  22. Jikov, V.V., Kozlov, S.M., Oleinik, A.O.: Homogenization of differential operators and integral functionals. Springer, Berlin Heidelberg (2012)

    Google Scholar 

  23. Kozlova, A., Li, Z., Watanabe, J.R., Zhou, S.Y., Bratvedt, K., Lee, S.H.: A real-field multiscale black-oil reservoir simulator. Society of Petroleum Engineers Journal 21(06), 2049–2061 (2016)

    Google Scholar 

  24. Lee, S.H., Wolfsteiner, C., Tchelepi, H.A.: Multiscale finite-volume formulation for multiphase flow in porous media: black oil formulation of compressible, three-phase flow with gravity. Comput. Geosci. 12(3), 351–366 (2008)

    Article  Google Scholar 

  25. Li, H., Durlofsky, L.J.: Local–global upscaling for compositional subsurface flow simulation. Transp. Porous Media 111(3), 701–730 (2016)

    Article  Google Scholar 

  26. Lie, K.-A., Møyner, O., Natvig, J.R., Kozlova, A., Bratvedt, K., Watanabe, S., Li, Z.: Successful application of multiscale methods in a real reservoir simulator environment. Comput. Geosci. 21(5), 981–998 (2017)

    Article  Google Scholar 

  27. Mikelić, A., Devigne, V., Van Duijn, C.J.: Rigorous upscaling of the reactive flow through a pore, under dominant peclet and damkohler numbers. SIAM J. Math. Anal. 38(4), 1262–1287 (2006)

    Article  Google Scholar 

  28. Moyner, O., Lie, K.A.: A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids. J. Comput. Phys. 304, 46–71 (2016)

    Article  Google Scholar 

  29. Moyner, O., Lie, K.A.: A multiscale restriction-smoothed basis method for compressible black-oil model. Society of Petroleum Engineers Journal 21(06), 2079–2096 (2016)

    Google Scholar 

  30. Pal, M., Lamine, S., Lie, K.A.: Validation of the multiscale mixed finite-element method. International Journal for Numerical Methods in Fluids 77(4), 206–223 (2015)

    Article  Google Scholar 

  31. Tavakoli, R., Yoon, H., Delshad, M., ElSheikh, A.H., Wheeler, M.F., Arnold, B.W.: Comparison of ensemble filtering algorithms and null-space monte carlo for parameter estimation and uncertainty quantification using co2 sequestration data. Water Resour. Res. 49(12), 8108–8127 (2013)

    Article  Google Scholar 

  32. Thomas, S.G., Wheeler, M.F.: Enhanced velocity mixed finite element methods for modeling coupled flow and transport on non-matching multiblock grids. Comput. Geosci. 15(4), 605–625 (2011)

    Article  Google Scholar 

  33. Weinan, E, Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: Heterogeneous multiscale methods: a review. Commun. Comput. Phys 2(3), 367–450 (2007)

    Google Scholar 

  34. Wheeler, J.A., Wheeler, M.F., Yotov, I.: Enhanced velocity mixed finite element methods for flow in multiblock domains. Comput. Geosci. 6(3-4), 315–332 (2002)

    Article  Google Scholar 

  35. Wu, X.-H., Efendiev, Y., Hou, T.Y.: Analysis of upscaling absolute permeability. Discrete and Continuous Dynamical Systems Series B 2(2), 185–204 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Department of Energy (DOE), Center for Frontiers of Subsurface Energy Security (CFSES) grant DE-SC000111, National Science Foundation (NSF), BIGDATA: Collaborative Research Award 1546553, and Center for Subsurface Modeling industrial affiliates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurpreet Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Leung, W. & Wheeler, M.F. Multiscale methods for model order reduction of non-linear multiphase flow problems. Comput Geosci 23, 305–323 (2019). https://doi.org/10.1007/s10596-018-9798-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-018-9798-5

Keywords

Navigation