Multiresolution coupled vertical equilibrium model for fast flexible simulation of CO2 storage

Abstract

CO2 capture and storage is an important technology for mitigating climate change. Design of efficient strategies for safe, long-term storage requires the capability to efficiently simulate processes taking place on very different temporal and spatial scales. The physical laws describing CO2 storage are the same as for hydrocarbon recovery, but the characteristic spatial and temporal scales are quite different. Petroleum reservoirs seldom extend more than tens of kilometers and have operational horizons spanning decades. Injected CO2 needs to be safely contained for hundreds or thousands of years, during which it can migrate hundreds or thousands of kilometers. Because of the vast scales involved, conventional 3D reservoir simulation quickly becomes computationally unfeasible. Large density difference between injected CO2 and resident brine means that vertical segregation will take place relatively quickly, and depth-integrated models assuming vertical equilibrium (VE) often represent a better strategy to simulate long-term migration of CO2 in large-scale aquifer systems. VE models have primarily been formulated for relatively simple rock formations and have not been coupled to 3D simulation in a uniform way. In particular, known VE simulations have not been applied to models of realistic geology in which many flow compartments may exist in-between impermeable layers. In this paper, we generalize the concept of VE models, formulated in terms of well-proven reservoir simulation technology, to complex aquifer systems with multiple layers and regions. We also introduce novel formulations for multi-layered VE models by use of both direct spill and diffuse leakage between individual layers. This new layered 3D model is then coupled to a state-of-the-art, 3D black-oil type model. The formulation of the full model is simple and exploits the fact that both models can be written in terms of generalized multiphase flow equations with particular choices of the relative permeabilities and capillary pressure functions. The resulting simulation framework is very versatile and can be used to simulate CO2 storage for any combination of 3D and VE-descriptions, thereby enabling the governing equations to be tailored to the local structure. We demonstrate the simplicity of the model formulation by extending the standard flow-solvers from the open-source Matlab Reservoir Simulation Toolbox (MRST), allowing immediate access to upscaling tools, complex well modeling, and visualization features. We demonstrate this capability on both conceptual and industry-grade models from a proposed storage formation in the North Sea. The current implementation assumes a sharp interface for the VE model, where the capillary forces do not lead to a capillary fringe. While the examples are taken specifically from CO2 storage applications, the framework itself is general and can be applied to many problems in which parts of the domain are dominated by gravity segregation. Such applications include gas storage and hydrocarbon recovery from gas reservoirs with local layering structure.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Andersen, O., Gasda, S., Nilsen, H.M.: Vertically averaged equations with variable density for CO2, flow in porous media. Transp. Porous Media 107, 95–127 (2015)

    Article  Google Scholar 

  2. 2.

    Andersen, O., Gasda, S.E., Nilsen, H.M.: Vertically averaged equations with variable density for co2 flow in porous media. Transp. Porous Media 107(1), 95–127 (2015)

    Article  Google Scholar 

  3. 3.

    Andersen, O., Lie, K.-A., Nilsen, H.M.: An open-source toolchain for simulation and optimization of aquifer-wide CO2 storage. Energy Procedia. In: The 8th Trondheim conference on capture, transport and storage, pp. 1–10 (2015)

  4. 4.

    Andersen, O., Nilsen, H.M., Lie, K.-A.: Reexamining CO2 storage capacity and utilization of the Utsira Formation. In: ECMOR XIV – 14th European Conference on the Mathematics of Oil Recovery, Catania, Sicily, Italy. EAGE, 2014, pp. 8–11 (2014)

  5. 5.

    Andrew, C.J., Haszeldine, S.R., Nazarian, B.: The sleipner co2 storage site: using a basin model to understand reservoir simulations of plume dynamics. First Break 33(6), 61–68 (2015)

    Google Scholar 

  6. 6.

    Bandilla, K.W., Celia, M.A, Elliot, T.R., Person, M., Ellett, K.M., Rupp, J.A., Gable, C., Zhang, Y.: Modeling carbon sequestration in the Illinois basin using a vertically-integrated approach. Comput. Vis Sci. 15(1), 39–51 (2012)

    Article  Google Scholar 

  7. 7.

    Bandilla, K.W., Celia, M.A., Leister, E.: Impact of model complexity on CO2 plume modeling at Sleipner. Energy Procedia 63, 3405–3415 (2014). 12th International Conference on Greenhouse Gas Control Technologies, GHGT-12

    Article  Google Scholar 

  8. 8.

    Bandilla, K.W., Kraemer, S.R.: Using semi-analytic solutions to approximate the area of potential impact for carbon dioxide injection. Int. J Greenh. Gas Control 8, 196–204 (2012)

    Article  Google Scholar 

  9. 9.

    Barker, J., Thibeau, S.: A critical review of the use of pseudorelative permeabilities for upscaling. SPE Reserv. Eng. 12(2), 138–143 (1997)

    Article  Google Scholar 

  10. 10.

    Batyck, R.P., Blunt, J.M., Thiele, M.R.: A 3d field-scale streamline-based reservoir simulator. Society of Petroleum Engineers, vol. 12 (1997). https://www.onepetro.org/journalpaper/SPE-36726-PA

  11. 11.

    Becker, B., Guo, B., Bandilla, K., Celia, M.A., Flemisch, B., Helmig, R.: A pseudo-vertical equilibrium model for slow gravity drainage dynamics. Water Resour. Res. 53(12), 10491–10507 (2017)

    Article  Google Scholar 

  12. 12.

    Brenier, Y., Jaffré, J.: Upstream differencing for multiphase flow in reservoir simulation. SIAM J. Numer Anal. 28(3), 685–696 (1991)

    Article  Google Scholar 

  13. 13.

    Cavanagh, A.J., Haszeldine, S.R., Nazarian, B.: The Sleipner CO2 storage site: using a basin model to understand reservoir simulations of plume dynamics. First Break 33(6), 61–68 (2015)

    Google Scholar 

  14. 14.

    Celia, M.A., Bachu, S., Nordbotten, J.M., Bandilla, K.W.: Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations. Water Resour. Res. 51, 6846–6892 (2015). https://doi.org/10.1002/2015WR017609

    Article  Google Scholar 

  15. 15.

    Coats, K.H., Dempsey, J.R., Henderson, J.H.: The use of vertical equilibrium in two-dimensional simulation of three-dimensional reservoir preformance. Soc. Pet. Eng. J. 11(1), 68–71 (1971)

    Article  Google Scholar 

  16. 16.

    Coats, K.H., Nielsen, R.L., Terune, M.H., Weber, A.G.: Simulation of three-dimensional, two-phase flow in oil and gas reservoirs. Soc. Pet. Eng. J. 7(4), 377–388 (1967)

    Article  Google Scholar 

  17. 17.

    Doster, F., Nordbotten, J.M., Celia, M.A.: Hysteretic upscaled constitutive relationships for vertically integrated porous media flow. Comput Visual. Sci. 15, 147–161 (2012)

    Article  Google Scholar 

  18. 18.

    Doster, F., Nordbotten, J.M., Celia, M.A.: Impact of capillary hysteresis and trapping on vertically integrated models for CO2 storage. Part C. Adv. Water Resour. 62, 465–474 (2013)

    Article  Google Scholar 

  19. 19.

    Froysa, K.G., Froyen, J., Espedal, M.S.: Simulation of 3d flow with gravity forces in a porous medium. Comput. Vis. Sci. 3(3), 121–131 (2000)

    Article  Google Scholar 

  20. 20.

    Gasda, S.E., Nordbotten, J.M., Celia, M.A.: Vertical equilibrium with sub-scale analytical methods for geological CO2, sequestration. Comput. Geosci. 13(4), 469–481 (2009)

    Article  Google Scholar 

  21. 21.

    Gasda, S.E., Nordbotten, J.M., Celia, M.A.: Vertically-averaged approaches to CO2 injection with solubility trapping. Water Resour. Res. 47, W05528 (2011)

    Article  Google Scholar 

  22. 22.

    Gasda, S.E., Stephansen, A.F., Aavatsmark, I., Dahle, H.K.: Upscaled modeling of CO2 injection and migration with coupled thermal processes. Energy Procedia 40, 384–391 (2013)

    Article  Google Scholar 

  23. 23.

    Gasda, S.E., du Plessis, E., Dahle, H.K.: Upscaled models for modeling CO2 injection and migration in geological systems. In: Bastian, P., Kraus, J., Scheichl, R., Wheeler, M. (eds.) Simulation of Flow in Porous Media, volume 12 of Radon Series on Computational and Applied Mathematics, pp. 1–38. De Gruyter, Berlin, Boston (2013)

  24. 24.

    Gasda, S.E., Nilsen, H.M., Dahle, H.K.: Impact of structural heterogeneity on upscaled models for large-scale CO2 migration and trapping in saline aquifers. Adv. Water Resour. Part C 62(0), 520–532 (2013)

    Article  Google Scholar 

  25. 25.

    Gasda, S.E., Nilsen, H.M., Dahle, H.K., Gray, W.G.: Effective models for CO2 migration in geological systems with varying topography. Water Resour. Res. 48, W10546 (2012). https://doi.org/10.1029/2012WR012264

  26. 26.

    Gleich, D.: Matlabbgl – a matlab graph library October (2008)

  27. 27.

    Guo, B., Bandilla, K.W., Doster, F., Keilegavlen, E., Celia, M.A.: A vertically integrated model with vertical dynamics for co2 storage. Water Resour. Res. 50(8), 6269–6284 (2014)

    Article  Google Scholar 

  28. 28.

    Guo, B., Bandilla, K.W, Nordbotten, J.M., Celia, M.A., Keilegavlen, E., Doster, F.: A multiscale multilayer vertically integrated model with vertical dynamics for co2 sequestration in layered geological formations. Water Resour. Res. 52(8), 6490–6505 (2016)

    Article  Google Scholar 

  29. 29.

    Halland, E.K., Mujezinović, J., Riis, F. (eds.): CO2 storage atlas: Norwegian Continental shelf. Norwegian Petroleum Directorate, Stavanger (2014)

    Google Scholar 

  30. 30.

    Hauge, V.L., Lie, K.-A., Natvig, J.R.: Flow-based coarsening for multiscale simulation of transport in porous media. Comput. Geosci. 16(2), 391–408 (2012)

    Article  Google Scholar 

  31. 31.

    Helmig, R.: Adaptive vertical equilibrium concept for energy storage in subsurface systems. In: SIAM Conference on Mathematical and Computational Issues in the Geosciences, September pp. 11–14, Erlangen, Germany (2017)

  32. 32.

    Henriquez, A., Apeland, O.J, Lie, O., Cheshire, I.: Novel simulation techniques used in a gas reservoir swith a thin oil zone. Soc. Petrol. Eng. 7(4) (1992). https://www.onepetro.org/journal-paper/SPE-21181-PA

  33. 33.

    Hesse, M.A., Orr, F.M., Tchelepi, H.A.: Gravity currents with residual trapping. J. Fluid Mech. 611, 35–60 (2008)

    Article  Google Scholar 

  34. 34.

    International Energy Agency: Sleipner benchmark model (2012)

  35. 35.

    Jacks, H.H., Smith, O.J.E., Mattax, C.C.: The modeling of a three-dimensional reservoir with a two-dimensional reservoir simulator – the use of dynamic pseudo functions. Soc. Pet. Eng. J. 13(3), 175–185 (1973)

    Article  Google Scholar 

  36. 36.

    Krogstad, S., Lie, K.-A., Møyner, O., Nilsen, H.M., Raynaud, X., Skaflestad, B.: MRST-AD – an open-source framework for rapid prototyping and evaluation of reservoir simulation problems. In: SPE Reservoir Simulation Symposium, 23–25 February, Houston, Texas (2015)

  37. 37.

    Kyte, J.R., Berry, D.W.: New pseudo functions to control numerical dispersion. Soc. Pet. Eng. J. 15(4), 269–276 (1975)

    Article  Google Scholar 

  38. 38.

    Lie, K.-A.: An introduction to reservoir simulation using MATLAB. User guide for the Matlab Reservoir Simulation Toolbox (MRST). SINTEF ICT, http://www.sintef.no/Projectweb/MRST/publications, 2nd (2015)

  39. 39.

    Lie, K.-A., Krogstad, S., Ligaarden, I.S., Natvig, J.R., Nilsen, H.M., Skaflestad, B.: Open source MATLAB implementation of consistent discretisations on complex grids. Comput. Geosci. 16, 297–322 (2012)

    Article  Google Scholar 

  40. 40.

    Lie, K.-A., Nilsen, H.M., Andersen, O., Møyner, O.: A simulation workflow for large-scale CO2 storage in the Norwegian North Sea. In: ECMOR XIV – 14th European Conference on the Mathematics of Oil Recovery, Catania, Sicily, Italy, 8-11 September 2014. EAGE (2014)

  41. 41.

    Lie, K.-A., Andersen, O., Møyner, O.: A simulation workflow for large-scale CO2 storage in the Norwegian North Sea. Comput. Geosci. 20(3), 607–622 (2016)

    Article  Google Scholar 

  42. 42.

    Ligaarden, I.S., Nilsen, H.M.: Numerical aspects of using vertical equilibrium models for simulating CO2 sequestration. In: Proceedings of ECMOR XII–12th European conference on the mathematics of oil recovery, Oxford, UK, 6–9 September 2010. EAGE (2010)

  43. 43.

    Martin, J.C.: Some mathematical aspects of two phase flow with application to flooding and gravity segregation. Prod. Monthly 22(6), 22–35 (1958)

    Google Scholar 

  44. 44.

    Martin, J.C.: Partial integration of equation of multiphase flow. Soc. Pet. Eng. J. 8(4), 370–380 (1968)

    Article  Google Scholar 

  45. 45.

    Møyner, O., Andersen, O., Nilsen, H.M.: Multi-model hybrid compositional simulator with application to segregated flow. In: ECMOR XVI-16th European Conference on the Mathematics of Oil Recovery (2018)

  46. 46.

    The MATLAB Reservoir Simulation Toolbox, version 2017a, 6. http://www.sintef.no/MRST/ (2017)

  47. 47.

    Mykkeltvedt, T.S., Nordbotten, J.M.: Estimating effective rates of convective mixing from commercial-scale injection. Environ. Earth Sci. 67(2), 527–535 (2012)

    Article  Google Scholar 

  48. 48.

    Nilsen, H.M., Herrera, P.A., Ashraf, M., Ligaarden, I., Iding, M., Hermanrud, C., Lie, K.-A., Nordbotten, J.M., Dahle, H.K., Keilegavlen, E.: Field-case simulation of CO2-plume migration using vertical-equilibrium models. Energy Procedia 4(0), 3801–3808 (2011)

    Article  Google Scholar 

  49. 49.

    Nilsen, H.M., Krogstad, S., Andersen, O., Allen, R., Lie, K.-A.: Using sensitivities and vertical-equilibrium models for parameter estimation of co2 injection models with application to sleipner data. Energy Procedia 114, 3476–3495 (2017). 13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14-18. November 2016, Lausanne, Switzerland

    Article  Google Scholar 

  50. 50.

    Nilsen, H.M., Lie, K.-A., Andersen, O.: Analysis of CO2 trapping capacities and long-term migration for geological formations in the Norwegian North Sea using MRST-co2lab. Comput. Geosci. 79, 15–26 (2015)

    Article  Google Scholar 

  51. 51.

    Lie, H.M., Lie, K.-A., Odd Andersen: Fully implicit simulation of vertical-equilibrium models with hysteresis and capillary fringe. Comput. Geosci. 20(1), 49–67 (2015)

    Google Scholar 

  52. 52.

    Nilsen, H.M., Lie, K.-A., Andersen, O.: Robust simulation of sharp-interface models for fast estimation of CO2 trapping capacity. Comput. Geosci., 1–21 (2015)

  53. 53.

    Nilsen, H.M., Lie, K.-A., Møyner, O., Andersen, O.: Spill-point analysis and structural trapping capacity in saline aquifers using MRST-co2lab. Comput. Geosci. 75, 33–43 (2015)

    Article  Google Scholar 

  54. 54.

    Nilsen, H.M., Syversveen, A.R., Lie, K.-A., Tveranger, J., Nordbotten, J.M.: Impact of top-surface morphology on CO2 storage capacity. Int. J. Greenh. Gas Control 11, 221–235 (2012)

    Article  Google Scholar 

  55. 55.

    Nordbotten, J.M., Dahle, H.K.: Impact of the capillary fringe in vertically integrated models for CO2 storage. Water Resour. Res. 47(2), W02537 (2011)

    Article  Google Scholar 

  56. 56.

    Nordbotten, J.M., Celia, M.A.: Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 8, 307–327 (2006)

    Article  Google Scholar 

  57. 57.

    Nordbotten, J.M., Celia, M.A.: Geological Storage of CO2: Modeling Approaches for Large-Scale Simulation. Wiley, New Jersey (2012)

    Google Scholar 

  58. 58.

    Pham, V.T.H., Riis, F., Gjeldvik, I.T., Halland, E.K., Tappel, I.M., Aagaard, P.: Assessment of co2 injection into the South Utsira-Skade aquifer, the North Sea, Norway. Energy 55, 529–540 (2013)

    Article  Google Scholar 

  59. 59.

    Schlumberger: Eclipse Technical Description Manual. Schlumberger 2009, 2nd edn. (2009)

  60. 60.

    Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual, Portable Documents. Pearson Education, London (2001)

    Google Scholar 

  61. 61.

    Singh, V., Cavanagh, A., Hansen, H., Nazarian, B., Iding, M., Ringrose, P.: Reservoir modeling of CO2 plume behavior calibrated against monitoring data from Sleipner, Norway. In: SPE Annual Technical Conference and Exhibition, Florence, Italy (2010)

  62. 62.

    SINTEF ICT: The MATLAB Reservoir Simulation Toolbox: Numerical CO2 Laboratory October (2014). http://www.sintef.no/co2lab

  63. 63.

    Stone, H.L.: Rigorous black oilpseudo functions. In: SPE Symposium on Reservoir Simulation, 17-20 February, Anaheim, California. Society of Petroleum Engineers, 1991. SPE-21207-MS (1991)

Download references

Acknowledgements

Equinor and the Sleipner License are acknowledged for provision of the Sleipner 2010 Reference dataset. Any conclusions in this paper concerning the Sleipner field are the authors’ own opinions and do not necessarily represent the views of Equinor.

We also acknowledge The Norwegian Petroleum Directorate for providing the model accompanying the paper [58] used in Example 4.

Funding

This work was funded in part by the Research Council of Norway through grant no. 243729 (Simulation and optimization of large-scale, aquifer-wide CO2 injection in the North Sea) and NCCS – Industry Driven Innovation for Fast Track CCS Deployment grant no. 257579. Olav Møyner is funded by VISTA, which is a basic research program funded by Equinor and conducted in close collaboration with The Norwegian Academy of Science and Letters.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Olav Møyner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Møyner, O., Nilsen, H.M. Multiresolution coupled vertical equilibrium model for fast flexible simulation of CO2 storage. Comput Geosci 23, 1–20 (2019). https://doi.org/10.1007/s10596-018-9775-z

Download citation

Keywords

  • CO2 storage
  • Hybrid model
  • Vertical-equilibrium
  • Flow and transport in porous media
  • Fully-implicit
  • Gas injection