Computational Geosciences

, Volume 22, Issue 5, pp 1203–1218 | Cite as

Hybrid Gaussian-cubic radial basis functions for scattered data interpolation

  • Pankaj K. MishraEmail author
  • Sankar K. Nath
  • Mrinal K. Sen
  • Gregory E. Fasshauer
Original Paper


Scattered data interpolation schemes using kriging and radial basis functions (RBFs) have the advantage of being meshless and dimensional independent; however, for the datasets having insufficient observations, RBFs have the advantage over geostatistical methods as the latter requires variogram study and statistical expertise. Moreover, RBFs can be used for scattered data interpolation with very good convergence, which makes them desirable for shape function interpolation in meshless methods for numerical solution of partial differential equations. For interpolation of large datasets, however, RBFs in their usual form, lead to solving an ill-conditioned system of equations, for which, a small error in the data can cause a significantly large error in the interpolated solution. In order to reduce this limitation, we propose a hybrid kernel by using the conventional Gaussian and a shape parameter independent cubic kernel. Global particle swarm optimization method has been used to analyze the optimal values of the shape parameter as well as the weight coefficients controlling the Gaussian and the cubic part in the hybridization. Through a series of numerical tests, we demonstrate that such hybridization stabilizes the interpolation scheme by yielding a far superior implementation compared to those obtained by using only the Gaussian or cubic kernels. The proposed kernel maintains the accuracy and stability at small shape parameter as well as relatively large degrees of freedom, which exhibit its potential for scattered data interpolation and intrigues its application in global as well as local meshless methods for numerical solution of PDEs.


Radial basis function Multivariate interpolation Particle swarm optimization Spatial data analysis 

Mathematics Subject Classification (2010)

65 68 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnett, G.A.: A robust RBF-FD formulation based on polyharmonic splines and polynomials. Ph.D. thesis, University of Colarado, USA (2015)Google Scholar
  2. 2.
    Chen, W., Fu, Z., Chen, C.: Recent Advances in Radial Basis Function Collocation Methods. Springer, Berlin (2014)CrossRefGoogle Scholar
  3. 3.
    Driscoll, T.A., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl. 43, 413–422 (2002)CrossRefGoogle Scholar
  4. 4.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. MHS ’95, pp 39–43 (1995)Google Scholar
  5. 5.
    Eberhart, R., Shi, Y.: Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 Congress on Evolutionary Computation, 2001, vol. 1, pp 81–86 (2001)Google Scholar
  6. 6.
    Fasshauer, G.F.: Meshfree Approximation Methods with MATLAB. World Scientific Publishing Co., Inc., River Edge (2007)CrossRefGoogle Scholar
  7. 7.
    Fasshauer, G.E., McCourt, M.J.: Stable evaluation of Gaussian radial basis function interpolants. SIAM J. Sci. Comput. 34(2), A737–A762 (2012)CrossRefGoogle Scholar
  8. 8.
    Fasshauer, G.E., McCourt, M.: Kernel-Based Approximation Methods Using MATLAB. World Scientific, Interdisciplinary Mathematical Sciences (2015)Google Scholar
  9. 9.
    Fasshauer, G., Zhang, J.: Preconditioning of Radial Basis Function Interpolation Systems via Accelerated Iterated Approximate Moving Least Squares Approximation, Computational Methods in Applied Sciences, vol. 11. Springer, Netherlands (2009)Google Scholar
  10. 10.
    Flyer, N., Wright, G.B., Fornberg, B.: Handbook of Geomathematics, chap. Radial Basis Function-Generated Finite Differences: a Mesh-Free Method for Computational Geosciences, pp 1–30. Springer, Berlin (2014)Google Scholar
  11. 11.
    Fornberg, B., Flyer, N.: A Primer on Radial Basis Functions with Applications to the Geosciences. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2015)CrossRefGoogle Scholar
  12. 12.
    Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30(1), 60–80 (2007)CrossRefGoogle Scholar
  13. 13.
    Fornberg, B., Driscoll, T., Wright, G., Charles, R.: Observations on the behavior of radial basis function approximations near boundaries. Computers & Mathematics with Applications 43(3–5), 473–490 (2002)CrossRefGoogle Scholar
  14. 14.
    Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011)CrossRefGoogle Scholar
  15. 15.
    Fornberg, B., Lehto, E., Powell, C.: Stable calculation of Gaussian-based RBF-FD stencils. Computers & Mathematics with Applications 65(4), 627–637 (2013)CrossRefGoogle Scholar
  16. 16.
    Franke, R.: A Critical Comparison of Some Methods for Interpolation of Scattered Data. Final report. Defense Technical Information Center (1979)Google Scholar
  17. 17.
    Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning, vol. 1. Springer series in statistics, New York (2001)Google Scholar
  18. 18.
    Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)Google Scholar
  19. 19.
    Gonzalez-Rodriguez, P., Moscoso, M., Kindelan, M.: Laurent expansion of the inverse of perturbed, singular matrices. J. Comput. Phys. 299, 307–319 (2015)CrossRefGoogle Scholar
  20. 20.
    Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76(8), 1905–1915 (1971)CrossRefGoogle Scholar
  21. 21.
    Kansa, E., Hon, Y.: Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations. Computers & Mathematics with Applications 39(7–8), 123–137 (2000)CrossRefGoogle Scholar
  22. 22.
    Kindelan, M., Moscoso, M., González-Rodríguez, P.: Radial basis function interpolation in the limit of increasingly flat basis functions. J. Comput. Phys. 307, 225–242 (2016)CrossRefGoogle Scholar
  23. 23.
    Lin, J., Chen, W., Sze, K.: A new radial basis function for Helmholtz problems. Engineering Analysis with Boundary Elements 36(12), 1923–1930 (2012)CrossRefGoogle Scholar
  24. 24.
    Marchi, S.D., Santin, G.: A new stable basis for radial basis function interpolation. J. Comput. Appl. Math. 253, 1–13 (2013)CrossRefGoogle Scholar
  25. 25.
    Mishra, P., Nath, S., Fasshauer, G., Sen, M., et al.: Frequency-domain meshless solver for acoustic wave equation using a stable radial basis-finite difference (RBF-FD) algorithm with hybrid kernels. In: 2017 SEG International Exposition and Annual Meeting. Society of Exploration Geophysicists (2017)Google Scholar
  26. 26.
    Mishra, P.K., Nath, S.K., Kosec, G., Sen, M.K.: An improved radial basis-pseudospectral method with hybrid gaussian-cubic kernels. Engineering Analysis with Boundary Elements 80, 162–171 (2017)CrossRefGoogle Scholar
  27. 27.
    Perez, R., Behdinan, K.: Particle swarm approach for structural design optimization. Comput. Struct. 85 (19–20), 1579–1588 (2007)CrossRefGoogle Scholar
  28. 28.
    Rippa, S.: An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comput. Math. 11(2-3), 193–210 (1999)CrossRefGoogle Scholar
  29. 29.
    Rusu, C., Rusu, V.: Artificial Intelligence in Theory and Practice: IFIP 19th World Computer Congress, TC 12: IFIP AI 2006 Stream, August 21–24, 2006, Santiago, Chile, chap. Radial Basis Functions Versus Geostatistics in Spatial Interpolations, pp 119–128. Springer, Boston (2006)Google Scholar
  30. 30.
    Sarra, S.A.: Radial basis function approximation methods with extended precision floating point arithmetic. Engineering Analysis with Boundary Elements 35(1), 68–76 (2011)CrossRefGoogle Scholar
  31. 31.
    Sarra, S.A.: Regularized symmetric positive definite matrix factorizations for linear systems arising from RBF interpolation and differentiation. Engineering Analysis with Boundary Elements 44(7), 76–1245 (2014)CrossRefGoogle Scholar
  32. 32.
    Sarra, S.A., Sturgill, D.: A random variable shape parameter strategy for radial basis function approximation methods. Engineering Analysis with Boundary Elements 33(11), 1239–1245 (2009)CrossRefGoogle Scholar
  33. 33.
    Schaback, R.: Reproduction of Polynomials by Radial Basis Functions. Wavelets, Images, and Surface Fitting (1994)Google Scholar
  34. 34.
    Shaw, R., Srivastava, S.: Particle swarm optimization: a new tool to invert geophysical data. Geophysics 72(2), F75–F83 (2007)CrossRefGoogle Scholar
  35. 35.
    Singh, A., Biswas, A.: Application of global particle swarm optimization for inversion of residual gravity anomalies over geological bodies with idealized geometries. Nat. Resour. Res. 25(3), 297–314 (2015)CrossRefGoogle Scholar
  36. 36.
    Trauth, M.H.: MATLAB Recipes for Earth Sciences. Springer, Berlin (2010)CrossRefGoogle Scholar
  37. 37.
    Wahba, G.: Spline Models for Observational Data, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1990)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pankaj K. Mishra
    • 1
    • 2
    Email author
  • Sankar K. Nath
    • 1
  • Mrinal K. Sen
    • 3
  • Gregory E. Fasshauer
    • 4
  1. 1.Department of Geology and GeophysicsIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of MathematicsHong Kong Baptist UniversityKowloon TongHong Kong
  3. 3.Jackson School of GeosciencesUniversity of Texas at AustinAustinUSA
  4. 4.Department of Applied Mathematics and StatisticsColorado School of MinesGoldenUSA

Personalised recommendations