Advertisement

Computational Geosciences

, Volume 22, Issue 3, pp 677–693 | Cite as

Constraint energy minimizing generalized multiscale finite element method in the mixed formulation

  • Eric Chung
  • Yalchin Efendiev
  • Wing Tat Leung
Original Paper
  • 56 Downloads

Abstract

This paper presents a novel mass-conservative mixed multiscale method for solving flow equations in heterogeneous porous media. The media properties (the permeability) contain multiple scales and high contrast. The proposed method solves the flow equation in a mixed formulation on a coarse grid by constructing multiscale basis functions. The resulting velocity field is mass-conservative on the fine grid. Our main goal is to obtain first-order convergence in terms of the mesh size which is independent of local contrast. This is achieved, first, by constructing some auxiliary spaces, which contain global information that cannot be localized, in general. This is built on our previous work on the generalized multiscale finite element method (GMsFEM). In the auxiliary space, multiscale basis functions corresponding to small (contrast-dependent) eigenvalues are selected. These basis functions represent the high-conductivity channels (which connect the boundaries of a coarse block). Next, we solve local problems to construct multiscale basis functions for the velocity field. These local problems are formulated in the oversampled domain, taking into account some constraints with respect to auxiliary spaces. The latter allows fast spatial decay of local solutions and, thus, allows taking smaller oversampled regions. The number of basis functions depends on small eigenvalues of the local spectral problems. Moreover, multiscale pressure basis functions are needed in constructing the velocity space. Our multiscale spaces have a minimal dimension, which is needed to avoid contrast dependence in the convergence. The method’s convergence requires an oversampling of several layers. We present an analysis of our approach. Our numerical results confirm that the convergence rate is first order with respect to the mesh size and independent of the contrast.

Keywords

High-contrast flow problem Mixed method Multiscale basis functions Localization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarnes, J.E.: On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. SIAM J. Multiscale Model. Simul. 2, 421–439 (2004)CrossRefGoogle Scholar
  2. 2.
    Aarnes, J.E., Efendiev, Y., Jiang, L.: Analysis of multiscale finite element methods using global information for two-phase flow simulations. SIAM J. Multiscale Model. Simul. 7, 2177–2193 (2008)CrossRefGoogle Scholar
  3. 3.
    Aarnes, J.E., Krogstad, S., Lie, K.-A.: A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform grids. SIAM J. Multiscale Model. Simul. 5(2), 337–363 (2006)CrossRefGoogle Scholar
  4. 4.
    Arbogast, T., Pencheva, G., Wheeler, M.F., Yotov, I.: A multiscale mortar mixed finite element method. SIAM J. Multiscale Model. Simul. 6(1), 319–346 (2007)CrossRefGoogle Scholar
  5. 5.
    Barker, J.W., Thibeau, S.: A critical review of the use of pseudorelative permeabilities for upscaling. SPE Reservoir Eng. 12, 138–143 (1997)CrossRefGoogle Scholar
  6. 6.
    Bush, L., Ginting, V.: On the application of the continuous Galerkin finite element method for conservation problems. SIAM J. Sci. Comput. 35(6), A2953—A2975 (2013)CrossRefGoogle Scholar
  7. 7.
    Chan, H. Y., Chung, E. T., Efendiev, Y.: Adaptive mixed GMsFEM for flows in heterogeneous media. Numer. Math. Theory, Methods and Appl. 9(4), 497–527 (2016)CrossRefGoogle Scholar
  8. 8.
    Chen, F., Chung, E., Jiang, L.: Least-squares mixed generalized multiscale finite element method. Comput. Methods Appl. Mech. Eng. 311, 764–787 (2016)CrossRefGoogle Scholar
  9. 9.
    Chen, Y., Durlofsky, L., Gerritsen, M., Wen, X.: A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations. Adv. Water Resour. 26, 1041–1060 (2003)CrossRefGoogle Scholar
  10. 10.
    Chen, Z., Hou, T. Y.: A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comput. 72(242), 541–576 (2003)CrossRefGoogle Scholar
  11. 11.
    Christie, M., Blunt, M.: Tenth SPE comparative solution project: A comparison of upscaling techniques. SPE Reser. Eval. Eng. 4, 308–317 (2001)Google Scholar
  12. 12.
    Chung, E., Efendiev, Y., Hou, T. Y.: Adaptive multiscale model reduction with generalized multiscale finite element methods. J. Comput. Phys. 320, 69–95 (2016)CrossRefGoogle Scholar
  13. 13.
    Chung, E. T., Efendiev, Y., Lee, C. S.: Mixed generalized multiscale finite element methods and applications. Multiscale Model. Simul. 13(1), 338–366 (2015)CrossRefGoogle Scholar
  14. 14.
    Chung, E. T., Efendiev, Y., Leung, W. T.: Constraint energy minimizing generalized multiscale finite element method. arXiv preprint. arXiv:1704.03193 (2017)
  15. 15.
    Chung, E. T., Fu, S., Yang, Y.: An enriched multiscale mortar space for high contrast flow problems. arXiv preprint. arXiv:1609.02610 (2016)
  16. 16.
    Chung, E. T., Leung, W. T., Vasilyeva, M.: Mixed GMsFEM for second order elliptic problem in perforated domains. J. Comput. Appl. Math. 304, 84–99 (2016)CrossRefGoogle Scholar
  17. 17.
    Cortinovis, D., Jenny, P.: Iterative Galerkin-enriched multiscale finite-volume method. J. Comput. Phys. 277, 248–267 (2014)CrossRefGoogle Scholar
  18. 18.
    Durlofsky, L.J.: Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water Resour. Res. 27, 699–708 (1991)CrossRefGoogle Scholar
  19. 19.
    Durlofsky, L.J.: Coarse scale models of two-phase flow in heterogeneous reservoirs: Volume averaged equations and their relation to existing upscaling techniques. Comput. Geosci. 2, 73–92 (1998)CrossRefGoogle Scholar
  20. 20.
    Efendiev, Y., Galvis, J.: A domain decomposition preconditioner for multiscale high-contrast problems. In: Huang, Y., Kornhuber, R., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science and Engineering XIX, volume 78 of Lect. Notes in Comput. Science and Eng., pages 189–196. Springer-Verlag (2011)Google Scholar
  21. 21.
    Efendiev, Y., Galvis, J., Hou, T.: Generalized multiscale finite element methods. J. Comput. Phys. 251, 116–135 (2013)CrossRefGoogle Scholar
  22. 22.
    Efendiev, Y., Galvis, J., Lazarov, R., Willems, J.: Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms. ESIAM : M2AN 46, 1175–1199 (2012)CrossRefGoogle Scholar
  23. 23.
    Efendiev, Y., Hou, T.: Multiscale finite element methods: Theory and applications. Springer, Berlin (2009)Google Scholar
  24. 24.
    Efendiev, Y., Hou, T., Wu, X.H.: Convergence of a nonconforming multiscale finite element method. SIAM J. Numer. Anal. 37, 888–910 (2000)CrossRefGoogle Scholar
  25. 25.
    Efendiev, Y., Iliev, O., Vassilevski, P.S.: Mini-workshop: Numerical upscaling for media with deterministic and stochastic heterogeneity. Oberwolfach Reports 10(1), 393–431 (2013)CrossRefGoogle Scholar
  26. 26.
    Hajibeygi, H., Kavounis, D., Jenny, P.: A hierarchical fracture model for the iterative multiscale finite volume method. J. Comput. Phys. 230(4), 8729–8743 (2011)CrossRefGoogle Scholar
  27. 27.
    Hou, T., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)CrossRefGoogle Scholar
  28. 28.
    Hou, T., Zhang, P.: private communicationsGoogle Scholar
  29. 29.
    Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Engrg. 127, 387–401 (1995)CrossRefGoogle Scholar
  30. 30.
    Jenny, P., Lee, S.H., Tchelepi, H.: Multi-scale finite volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187, 47–67 (2003)CrossRefGoogle Scholar
  31. 31.
    Lie, K.-A., Møyner, O., Natvig, J.R., et al.: A feature-enriched multiscale method for simulating complex geomodels. In: SPE Reservoir Simulation Conference. Society of Petroleum Engineers (2017)Google Scholar
  32. 32.
    Lunati, I., Jenny, P.: Multi-scale finite-volume method for highly heterogeneous porous media with shale layers. In: Proceedings of the 9th European Conference on the Mathematics of Oil Recovery (ECMOR), Cannes, France (2004)Google Scholar
  33. 33.
    Målqvist, A., Peterseim, D.: Localization of elliptic multiscale problems. Math. Comput. 83(290), 2583–2603 (2014)CrossRefGoogle Scholar
  34. 34.
    Odsæter, L.H., Wheeler, M.F., Kvamsdal, T., Larson, M.G.: Postprocessing of non-conservative flux for compatibility with transport in heterogeneous media. Comput. Methods Appl. Mech. Eng. 315, 799–830 (2017)CrossRefGoogle Scholar
  35. 35.
    Owhadi, H.: Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical information games. SIAM Rev. 59(1), 99–149 (2017)CrossRefGoogle Scholar
  36. 36.
    Owhadi, H., Zhang, L., Berlyand, L.: Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization. ESAIM: Math. Model. Numer. Anal. 48(2), 517–552 (2014)CrossRefGoogle Scholar
  37. 37.
    Peszyńska, M.: Mortar adaptivity in mixed methods for flow in porous media. Int. J. Numer. Anal. Model. 2(3), 241–282 (2005)Google Scholar
  38. 38.
    Peszyńska, M., Wheeler, M., Yotov, I.: Mortar upscaling for multiphase flow in porous media. Comput. Geosci. 6(1), 73–100 (2002)CrossRefGoogle Scholar
  39. 39.
    Wu, X.H., Efendiev, Y., Hou, T.Y.: Analysis of upscaling absolute permeability. Discrete and Continuous Dynamical Systems, Series B. 2, 158–204 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsThe Chinese University of Hong Kong (CUHK)Sha TinHong Kong
  2. 2.Department of Mathematics and Institute for Scientific Computation (ISC)Texas A&M UniversityCollege StationUSA
  3. 3.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations