Abstract
A numerical method is formulated for the solution of the advective Cahn–Hilliard (CH) equation with constant and degenerate mobility in three-dimensional porous media with non-vanishing velocity on the exterior boundary. The CH equation describes phase separation of an immiscible binary mixture at constant temperature in the presence of a conservation constraint and dissipation of free energy. Porous media / pore-scale problems specifically entail images of rocks in which the solid matrix and pore spaces are fully resolved. The interior penalty discontinuous Galerkin method is used for the spatial discretization of the CH equation in mixed form, while a semi-implicit convex–concave splitting is utilized for temporal discretization. The spatial approximation order is arbitrary, while it reduces to a finite volume scheme for the choice of element-wise constants. The resulting nonlinear systems of equations are reduced using the Schur complement and solved via inexact Newton’s method. The numerical scheme is first validated using numerical convergence tests and then applied to a number of fundamental problems for validation and numerical experimentation purposes including the case of degenerate mobility. First-order physical applicability and robustness of the numerical method are shown in a breakthrough scenario on a voxel set obtained from a micro-CT scan of a real sandstone rock sample.
This is a preview of subscription content, access via your institution.
References
Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165 (1998). https://doi.org/10.1146/annurev.fluid.30.1.139
Kim, J.: Phase-field models for multi-component fluid flows. Communications in Computational Physics 12 (3), 613–661 (2012). https://doi.org/10.4208/cicp.301110.040811a
Morral, J., Cahn, J.: Spinodal decomposition in ternary systems. Acta Metall. 19(10), 1037–1045 (1971). https://doi.org/10.1016/0001-6160(71)90036-8
Boyer, F., Lapuerta, C.: Study of a three component Cahn-Hilliard flow model. ESAIM: Mathematical Modelling and Numerical Analysis 40(4), 653–687 (2006). https://doi.org/10.1051/m2an:2006028
Kim, J.: A numerical method for the Cahn-Hilliard equation with a variable mobility. Commun. Nonlinear Sci. Numer. Simul. 12(8), 1560–1571 (2007). https://doi.org/10.1016/j.cnsns.2006.02.010
Boyer, F., Lapuerta, C., Minjeaud, S., Piar, B., Quintard, M.: Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows. Transp. Porous Media 82(3), 463–483 (2009). https://doi.org/10.1007/s11242-009-9408-z
Kim, J., Lowengrub, J.: Phase field modeling and simulation of three-phase flows. Interfaces and Free Boundaries 7(4), 435–466 (2005). https://doi.org/10.4171/IFB/132
Yue, P., Feng, J.J., Liu, C., Shen, J.: Diffuse-interface simulations of drop coalescence and retraction in viscoelastic fluids. J. Non-Newtonian Fluid Mech. 129(3), 163–176 (2005). https://doi.org/10.1016/j.jnnfm.2005.07.002
Ding, H., Spelt, P.: Wetting condition in diffuse interface simulations of contact line motion. Phys. Rev. E. 75, 046708–1–046708–8 (2007). https://doi.org/10.1103/PhysRevE.75.046708
He, Q., Glowinski, R., Wang, X.-P.: A least-squares/finite element method for the numerical solution of the Navier-Stokes-Cahn-Hilliard system modeling the motion of the contact line. J. Comput. Phys. 230, 4991–5009 (2011). https://doi.org/10.1016/j.jcp.2011.03.022
Jacqmin, D.: Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 57–88 (2000). https://doi.org/10.1017/S0022112099006874
Khatavkar, V.V., Anderson, P.D., Duineveld, P.C., Meijer, H.H.E.: Diffuse-interface modelling of droplet impact. J. Fluid Mech. 581, 97–127 (2007). https://doi.org/10.1017/S002211200700554X
Lee, H.G., Kim, J.: Accurate contact angle boundary conditions for the Cahn-Hilliard equations. Comput. Fluids 44(1), 178–186 (2011). https://doi.org/10.1016/j.compfluid.2010.12.031
Yue, P., Feng, J.J.: Wall energy relaxation in the Cahn-Hilliard model for moving contact lines. Phys. Fluids 23(1) (2011). https://doi.org/10.1063/1.3541806
Alpak, F.O., Riviere, B., Frank, F.: A phase-field method for the direct simulation of two-phase flows in pore-scale media using a non-equilibrium wetting boundary condition. Comput. Geosci., 1–28 (2016). https://doi.org/10.1007/s10596-015-9551-2
Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958). https://doi.org/10.1063/1.1744102
Cahn, J.W.: On spinodal decomposition. Acta Metall. 9, 795–801 (1961)
Bai, F., Elliott, C.M., Gardiner, A., Spence, A., Stuart, A.M.: The viscous Cahn-Hilliard equation. I. Computations. Nonlinearity 8(2), 131 (1995). https://doi.org/10.1088/0951-7715/8/2/002
Emmerich, H.: The Diffuse Interface Approach in Materials Science: Thermodynamic Concepts and Applications of Phase-Field Models. Springer Publishing Company Inc. (2011)
Saxena, R., Caneba, G.T.: Studies of spinodal decomposition in a ternary polymer-solvent-nonsolvent system. Polym. Eng. Sci. 42(5), 1019–1031 (2002). https://doi.org/10.1002/pen.11009
Aristotelous, A.C., Karakashian, O., Wise, S.M.: A mixed discontinuous Galerkin convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver. Discrete and Continuous Dynamical Systems – Series B 18(9), 2211–2238 (2013). https://doi.org/10.3934/dcdsb.2013.18.2211
Cogswell, D.A.: A Phase-Field Study of Ternary Multiphase Microstructures. Ph.D. thesis, Massachusetts Institute of Technology. Dept. of Materials Science and Engineering (2010). http://hdl.handle.net/1721.1/59704
Wise, S.M., Lowengrub, J.S., Frieboes, H.B., Cristini, V.: Three-dimensional multispecies nonlinear tumor growth—I. Model and numerical method. J. Theor. Biol. 253(3), 524–543 (2008). https://doi.org/10.1016/j.jtbi.2008.03.027
Wu, X., van Zwieten, G.J., van der Zee, K.G.: Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models. Int. J. Numer. Methods Biomed. Eng. 30(2), 180–203 (2014). https://doi.org/10.1002/cnm.2597
Colli, P., Gilardi, G., Hilhorst, D.: On a Cahn-Hilliard type phase field system related to tumor growth. Discrete and Continuous Dynamical Systems 35(6), 2423–2442 (2015). https://doi.org/10.3934/dcds.2015.35.2423
Bertozzi, A.L., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans. Image Process. 16 (1), 285–291 (2007). https://doi.org/10.1109/TIP.2006.887728
Tierra, G., Guillén-González, F.: Numerical methods for solving the Cahn-Hilliard equation and its applicability to related energy-based models. Arch. Comput. Meth. Eng. 22(2), 269–289 (2015). https://doi.org/10.1007/s11831-014-9112-1
Davis, H.T., Scriven, L.E.: Stress and Structure in Fluid Interfaces. In: Advances in Chemical Physics, pp 357–454. Wiley, New York (2007). https://doi.org/10.1002/9780470142691.ch6
Saylor, D.M., Kim, C.-S., Patwardhan, D.V., Warren, J.A.: Diffuse-interface theory for structure formation and release behavior in controlled drug release systems. Acta Biomater. 3(6), 851–864 (2007). https://doi.org/10.1016/j.actbio.2007.03.011
Furihata, D.: A stable and conservative finite difference scheme for the Cahn-Hilliard equation. Numer. Math. 87(4), 675–699 (2001). https://doi.org/10.1007/PL00005429
Cueto-Felgueroso, L., Peraire, J.: A time-adaptive finite volume method for the Cahn-Hilliard and Kuramoto-Sivashinsky equations. J. Comput. Phys. 227(24), 9985–10017 (2008). https://doi.org/10.1016/j.jcp.2008.07.024
Kim, J., Kang, K.: A numerical method for the ternary Cahn-Hilliard system with a degenerate mobility. Appl. Numer. Math. 59(5), 1029–1042 (2009). https://doi.org/10.1016/j.apnum.2008.04.004
Elliott, C.M., French, D.A.: A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation. SIAM J. Numer. Anal. 26(4), 884–903 (1989). https://doi.org/10.1137/0726049
Elliott, C.M., Garcke, H.: On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27(2), 404–423 (1996). https://doi.org/10.1137/S0036141094267662
Zhang, S., Wang, M.: A nonconforming finite element method for the Cahn-Hilliard equation. J. Comput. Phys. 229(19), 7361–7372 (2010). https://doi.org/10.1016/j.jcp.2010.06.020
Du, Q., Nicolaides, R.A.: Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28(5), 1310–1322 (1991). https://doi.org/10.1137/0728069
Wodo, O., Ganapathysubramanian, B.: Computationally efficient solution to the Cahn-Hilliard equation: adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem. J. Comput. Phys. 230 (15), 6037–6060 (2011). https://doi.org/10.1016/j.jcp.2011.04.012
Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy. Numer. Math. 63(1), 39–65 (1992). https://doi.org/10.1007/BF01385847
Barrett, W.J., Blowey, F.J., Garcke, H.: Finite element approximation of a fourth order nonlinear degenerate parabolic equation. Numer. Math. 80(4), 525–556 (1998). https://doi.org/10.1007/s002110050377
Elliott, C.M., French, D.A., Milner, F.A.: A second order splitting method for the Cahn-Hilliard equation. Numer. Math. 54(5), 575–590 (1989). https://doi.org/10.1007/BF01396363
Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn-Hilliard equation. Numer. Math. 99(1), 47–84 (2004). https://doi.org/10.1007/s00211-004-0546-5
He, Y., Liu, Y., Tang, T.: On large time-stepping methods for the Cahn-Hilliard equation. Appl. Numer. Math. 57(5–7), 616–628 (2007). https://doi.org/10.1016/j.apnum.2006.07.026. special Issue for the International Conference on Scientific Computing
Gómez, H., Calo, V.M., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of the Cahn-Hilliard phase-field model. Comput. Methods Appl. Mech. Eng. 197(49–50), 4333–4352 (2008). https://doi.org/10.1016/j.cma.2008.05.003
Wu, X., van Zwieten, G.J., van der Zee, K.G., Simsek, G.: Adaptive time-stepping for Cahn-Hilliard-type equations with application to diffuse-interface tumor-growth models. In: de Almeida, J.P.M., Díez, P., Tiago, C., Parés, N. (eds.) VI International Conference on Adaptive Modeling and Simulation (2013)
Wells, G.N., Kuhl, E., Garikipati, K.: A discontinuous Galerkin method for the Cahn-Hilliard equation. J. Comput. Phys. 218(2), 860–877 (2006). https://doi.org/10.1016/j.jcp.2006.03.010
Feng, X., Karakashian, O.A.: Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition. Math. Comput. 76(259), 1093–1117 (2007)
Aristotelous, A.C., Karakashian, O.A., Wise, S.M.: Adaptive, second-order in time, primitive-variable discontinuous Galerkin schemes for a Cahn-Hilliard equation with a mass source. IMA J. Numer. Anal. 35(3), 1167–1198 (2015). https://doi.org/10.1093/imanum/dru035
Kay, D., Styles, V., Süli, E.: Discontinuous Galerkin finite element approximation of the Cahn-Hilliard equation with convection. SIAM J. Numer. Anal. 47(4), 2660–2685 (2009). https://doi.org/10.1137/080726768
Cockburn, B., Shu, C.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998). https://doi.org/10.1137/S0036142997316712
Aizinger, V., Dawson, C., Cockburn, B., Castillo, P.: The local discontinuous Galerkin method for contaminant transport. Adv. Water Resour. 24(1), 73–87 (2000). https://doi.org/10.1016/S0309-1708(00)00022-1
Xia, Y., Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for the Cahn-Hilliard type equations. J. Comput. Phys. 227(1), 472–491 (2007). https://doi.org/10.1016/j.jcp.2007.08.001
Xia, Y., Xu, Y., Shu, C.-W.: Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system. Communications in Computational Physics 5(2), 821–835 (2009)
Guo, R., Xu, Y.: Efficient solvers of discontinuous Galerkin discretization for the Cahn-Hilliard equations. J. Sci. Comput. 58(2), 380–408 (2013). https://doi.org/10.1007/s10915-013-9738-4
Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49(3), 435–479 (1977). https://doi.org/10.1103/RevModPhys.49.435
Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22(3), 1150013 (2012). https://doi.org/10.1142/S0218202511500138
Boyer, F., Minjeaud, S.: Numerical schemes for a three component Cahn-Hilliard model. ESAIM: M2AN 45(4), 697–738 (2011). https://doi.org/10.1051/m2an/2010072
Jingxue, Y.: On the existence of nonnegative continuous solutions of the Cahn-Hilliard equation. J. Differ. Equ. 97(2), 310–327 (1992)
Elliott, C.: The Cahn-Hilliard model for the kinetics of phase separation. In: Rodrigues, J.F. (ed.) Mathematical Models for Phase Change Problems, Vol. 88 of International Series of Numerical Mathematics, pp 35–73. Birkhäuser, Basel (1989). https://doi.org/10.1007/978-3-0348-9148-6_3
Elliott, C., Songmu, Z.: On the Cahn-Hilliard equation. Arch. Ration. Mech. Anal. 96(4), 339–357 (1986)
Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks—part I: imaging and segmentation. Comput. Geosci. 50(Supplement C), 25–32 (2013). https://doi.org/10.1016/j.cageo.2012.09.005
Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 454(1978), 2617–2654 (1998). https://doi.org/10.1098/rspa.1998.0273
Qiao, Z., Sun, S.: Two-phase fluid simulation using a diffuse interface model with Peng-Robinson equation of state. SIAM J. Sci. Comput. 36(4), B708–B728 (2014). https://doi.org/10.1137/130933745
Elliott, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30(6), 1622–1663 (1993). https://doi.org/10.1137/0730084
Eyre, J.D.: An unconditionally stable one-step scheme for gradient systems (1997)
Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Symposia BB – Computational & Mathematical Models of Microstructural Evolution, vol. 529 of MRS Proceedings. https://doi.org/10.1557/PROC-529-39 (1998)
de Mello, E., da Silveira Filho, O.T.: Numerical study of the Cahn-Hilliard equation in one, two and three dimensions. Physica A: Statistical Mechanics and its Applications 347(1–4), 429–443 (2005). https://doi.org/10.1016/j.physa.2004.08.076
Grün, G., Klingbeil, F.: Two-phase flow with mass density contrast: stable schemes for a thermodynamic consistent and frame-indifferent diffuse-interface model. J. Comput. Phys. 257, 708–725 (2014). https://doi.org/10.1016/j.jcp.2013.10.028
Barrett, J.W., Blowey, J.F., Garcke, H.: Finite element approximation of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37(1), 286–318 (1999). https://doi.org/10.1137/S0036142997331669
Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Springer, Applied Mathematical Sciences (2004)
Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics (2008)
Chidyagwai, P., Mishev, I., Rivière, B.: On the coupling of finite volume and discontinuous Galerkin method for elliptic problems. J. Comput. Appl. Math. 235(8), 2193–2204 (2011). https://doi.org/10.1016/j.cam.2010.10.017
Aristotelous, A.C.: Adaptive Discontinuous Galerkin Finite Element Methods for a Diffuse Interface Model of Biological Growth. Ph.D. Thesis, University of Tennessee (2011). http://trace.tennessee.edu/utk_graddiss/1051
Lee, A.A., Münch, A., Süli, E.: Sharp-interface limits of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Appl. Math. 76(2), 433–456 (2016). https://doi.org/10.1137/140960189
Ern, A., Stephansen, A.F., Zunino, P.: A discontinuous Galerkin method with weighted averages for advection–diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer. Anal. 29(2), 235–256 (2009). https://doi.org/10.1093/imanum/drm050
Castillo, P.: Performance of discontinuous Galerkin methods for elliptic PDEs. SIAM J. Sci. Comput. 24(2), 524–547 (2002). https://doi.org/10.1137/S1064827501388339
Hanisch, M.: Multigrid preconditioning for the biharmonic Dirichlet problem. SIAM J. Numer. Anal. 30(1), 184–214 (1993). https://doi.org/10.1137/0730009
Armijo, L.: Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J. Math. 16 (1), 1–3 (1966)
Kelley, C.T.: Solving nonlinear equations with newton’s method. Society for Industrial and Applied Mathematics (2003). https://doi.org/10.1137/1.9780898718898
Fidkowski, K.J., Oliver, T.A., Lu, J., Darmofal, L.D.: P-multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. J. Comput. Phys. 207(1), 92–113 (2005). https://doi.org/10.1016/j.jcp.2005.01.005
Luo, H., Baum, J.D., Löhner, R.: Fast p-multigrid discontinuous Galerkin method for compressible flows at all speeds. AIAA journal 46(3), 635–652 (2008)
Aizinger, V., Kuzmin, D., Korous, L.: Scale separation in fast hierarchical solvers for discontinuous Galerkin methods. Appl. Math. Comput. 266, 838–849 (2015). https://doi.org/10.1016/j.amc.2015.05.047
Thiele, C., Araya-Polo, M., Alpak, F.O., Riviere, B., Frank, F.: Inexact hierarchical scale separation: a two-scale approach for linear systems from discontinuous Galerkin discretizations. Comput. Math. Appl. (2017). https://doi.org/10.1016/j.camwa.2017.06.025
Yue, P., Zhou, C., Feng, J.J.: Spontaneous shrinkage of drops and mass conservation in phase-field simulations. J. Comput. Phys. 223(1), 1–9 (2007)
Bänsch, E., Morin, P., Nochetto, R.H.: Preconditioning a class of fourth order problems by operator splitting. Numer. Math. 118(2), 197–228 (2010). https://doi.org/10.1007/s00211-010-0333-4
Grossman, M., Araya-Polo, M., Alpak, F., Frank, F., Limbeck, J., Sarkar, V.: Analysis of sparse matrix-vector multiply for large sparse linear systems. In: ECMOR XV – 15th European Conference on the Mathematics of Oil Recovery (2016). https://doi.org/10.3997/2214-4609.201601798. http://www.earthdoc.org/publication/publicationdetails/?publication=86246
Grossman, M., Thiele, C., Araya-Polo, M., Frank, F., Alpak, F.O., Sarkar, V.: A survey of sparse matrix-vector multiplication performance on large matrices. In: Rice Oil & Gas High Performance Computing Workshop (2016). arXiv:1608.00636
Thiele, C., Araya-Polo, M., Stoyanov, D., Frank, F., Alpak, F.O.: Asynchronous hybrid parallel spmv in an industrial application. In: 2016 International Conference on Computational Science and Computational Intelligence (CSCI), pp 1196–1201 (2016). https://doi.org/10.1109/CSCI.2016.0226
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Frank, F., Liu, C., Alpak, F.O. et al. A finite volume / discontinuous Galerkin method for the advective Cahn–Hilliard equation with degenerate mobility on porous domains stemming from micro-CT imaging. Comput Geosci 22, 543–563 (2018). https://doi.org/10.1007/s10596-017-9709-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10596-017-9709-1