Skip to main content

A finite volume / discontinuous Galerkin method for the advective Cahn–Hilliard equation with degenerate mobility on porous domains stemming from micro-CT imaging

Abstract

A numerical method is formulated for the solution of the advective Cahn–Hilliard (CH) equation with constant and degenerate mobility in three-dimensional porous media with non-vanishing velocity on the exterior boundary. The CH equation describes phase separation of an immiscible binary mixture at constant temperature in the presence of a conservation constraint and dissipation of free energy. Porous media / pore-scale problems specifically entail images of rocks in which the solid matrix and pore spaces are fully resolved. The interior penalty discontinuous Galerkin method is used for the spatial discretization of the CH equation in mixed form, while a semi-implicit convex–concave splitting is utilized for temporal discretization. The spatial approximation order is arbitrary, while it reduces to a finite volume scheme for the choice of element-wise constants. The resulting nonlinear systems of equations are reduced using the Schur complement and solved via inexact Newton’s method. The numerical scheme is first validated using numerical convergence tests and then applied to a number of fundamental problems for validation and numerical experimentation purposes including the case of degenerate mobility. First-order physical applicability and robustness of the numerical method are shown in a breakthrough scenario on a voxel set obtained from a micro-CT scan of a real sandstone rock sample.

This is a preview of subscription content, access via your institution.

References

  1. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165 (1998). https://doi.org/10.1146/annurev.fluid.30.1.139

    Article  Google Scholar 

  2. Kim, J.: Phase-field models for multi-component fluid flows. Communications in Computational Physics 12 (3), 613–661 (2012). https://doi.org/10.4208/cicp.301110.040811a

    Article  Google Scholar 

  3. Morral, J., Cahn, J.: Spinodal decomposition in ternary systems. Acta Metall. 19(10), 1037–1045 (1971). https://doi.org/10.1016/0001-6160(71)90036-8

    Article  Google Scholar 

  4. Boyer, F., Lapuerta, C.: Study of a three component Cahn-Hilliard flow model. ESAIM: Mathematical Modelling and Numerical Analysis 40(4), 653–687 (2006). https://doi.org/10.1051/m2an:2006028

    Article  Google Scholar 

  5. Kim, J.: A numerical method for the Cahn-Hilliard equation with a variable mobility. Commun. Nonlinear Sci. Numer. Simul. 12(8), 1560–1571 (2007). https://doi.org/10.1016/j.cnsns.2006.02.010

    Article  Google Scholar 

  6. Boyer, F., Lapuerta, C., Minjeaud, S., Piar, B., Quintard, M.: Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows. Transp. Porous Media 82(3), 463–483 (2009). https://doi.org/10.1007/s11242-009-9408-z

    Article  Google Scholar 

  7. Kim, J., Lowengrub, J.: Phase field modeling and simulation of three-phase flows. Interfaces and Free Boundaries 7(4), 435–466 (2005). https://doi.org/10.4171/IFB/132

    Article  Google Scholar 

  8. Yue, P., Feng, J.J., Liu, C., Shen, J.: Diffuse-interface simulations of drop coalescence and retraction in viscoelastic fluids. J. Non-Newtonian Fluid Mech. 129(3), 163–176 (2005). https://doi.org/10.1016/j.jnnfm.2005.07.002

    Article  Google Scholar 

  9. Ding, H., Spelt, P.: Wetting condition in diffuse interface simulations of contact line motion. Phys. Rev. E. 75, 046708–1–046708–8 (2007). https://doi.org/10.1103/PhysRevE.75.046708

    Article  Google Scholar 

  10. He, Q., Glowinski, R., Wang, X.-P.: A least-squares/finite element method for the numerical solution of the Navier-Stokes-Cahn-Hilliard system modeling the motion of the contact line. J. Comput. Phys. 230, 4991–5009 (2011). https://doi.org/10.1016/j.jcp.2011.03.022

    Article  Google Scholar 

  11. Jacqmin, D.: Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 57–88 (2000). https://doi.org/10.1017/S0022112099006874

    Article  Google Scholar 

  12. Khatavkar, V.V., Anderson, P.D., Duineveld, P.C., Meijer, H.H.E.: Diffuse-interface modelling of droplet impact. J. Fluid Mech. 581, 97–127 (2007). https://doi.org/10.1017/S002211200700554X

    Article  Google Scholar 

  13. Lee, H.G., Kim, J.: Accurate contact angle boundary conditions for the Cahn-Hilliard equations. Comput. Fluids 44(1), 178–186 (2011). https://doi.org/10.1016/j.compfluid.2010.12.031

    Article  Google Scholar 

  14. Yue, P., Feng, J.J.: Wall energy relaxation in the Cahn-Hilliard model for moving contact lines. Phys. Fluids 23(1) (2011). https://doi.org/10.1063/1.3541806

  15. Alpak, F.O., Riviere, B., Frank, F.: A phase-field method for the direct simulation of two-phase flows in pore-scale media using a non-equilibrium wetting boundary condition. Comput. Geosci., 1–28 (2016). https://doi.org/10.1007/s10596-015-9551-2

  16. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958). https://doi.org/10.1063/1.1744102

    Article  Google Scholar 

  17. Cahn, J.W.: On spinodal decomposition. Acta Metall. 9, 795–801 (1961)

    Article  Google Scholar 

  18. Bai, F., Elliott, C.M., Gardiner, A., Spence, A., Stuart, A.M.: The viscous Cahn-Hilliard equation. I. Computations. Nonlinearity 8(2), 131 (1995). https://doi.org/10.1088/0951-7715/8/2/002

    Article  Google Scholar 

  19. Emmerich, H.: The Diffuse Interface Approach in Materials Science: Thermodynamic Concepts and Applications of Phase-Field Models. Springer Publishing Company Inc. (2011)

  20. Saxena, R., Caneba, G.T.: Studies of spinodal decomposition in a ternary polymer-solvent-nonsolvent system. Polym. Eng. Sci. 42(5), 1019–1031 (2002). https://doi.org/10.1002/pen.11009

    Article  Google Scholar 

  21. Aristotelous, A.C., Karakashian, O., Wise, S.M.: A mixed discontinuous Galerkin convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver. Discrete and Continuous Dynamical Systems – Series B 18(9), 2211–2238 (2013). https://doi.org/10.3934/dcdsb.2013.18.2211

    Article  Google Scholar 

  22. Cogswell, D.A.: A Phase-Field Study of Ternary Multiphase Microstructures. Ph.D. thesis, Massachusetts Institute of Technology. Dept. of Materials Science and Engineering (2010). http://hdl.handle.net/1721.1/59704

  23. Wise, S.M., Lowengrub, J.S., Frieboes, H.B., Cristini, V.: Three-dimensional multispecies nonlinear tumor growth—I. Model and numerical method. J. Theor. Biol. 253(3), 524–543 (2008). https://doi.org/10.1016/j.jtbi.2008.03.027

    Article  Google Scholar 

  24. Wu, X., van Zwieten, G.J., van der Zee, K.G.: Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models. Int. J. Numer. Methods Biomed. Eng. 30(2), 180–203 (2014). https://doi.org/10.1002/cnm.2597

    Article  Google Scholar 

  25. Colli, P., Gilardi, G., Hilhorst, D.: On a Cahn-Hilliard type phase field system related to tumor growth. Discrete and Continuous Dynamical Systems 35(6), 2423–2442 (2015). https://doi.org/10.3934/dcds.2015.35.2423

    Article  Google Scholar 

  26. Bertozzi, A.L., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans. Image Process. 16 (1), 285–291 (2007). https://doi.org/10.1109/TIP.2006.887728

    Article  Google Scholar 

  27. Tierra, G., Guillén-González, F.: Numerical methods for solving the Cahn-Hilliard equation and its applicability to related energy-based models. Arch. Comput. Meth. Eng. 22(2), 269–289 (2015). https://doi.org/10.1007/s11831-014-9112-1

    Article  Google Scholar 

  28. Davis, H.T., Scriven, L.E.: Stress and Structure in Fluid Interfaces. In: Advances in Chemical Physics, pp 357–454. Wiley, New York (2007). https://doi.org/10.1002/9780470142691.ch6

  29. Saylor, D.M., Kim, C.-S., Patwardhan, D.V., Warren, J.A.: Diffuse-interface theory for structure formation and release behavior in controlled drug release systems. Acta Biomater. 3(6), 851–864 (2007). https://doi.org/10.1016/j.actbio.2007.03.011

    Article  Google Scholar 

  30. Furihata, D.: A stable and conservative finite difference scheme for the Cahn-Hilliard equation. Numer. Math. 87(4), 675–699 (2001). https://doi.org/10.1007/PL00005429

    Article  Google Scholar 

  31. Cueto-Felgueroso, L., Peraire, J.: A time-adaptive finite volume method for the Cahn-Hilliard and Kuramoto-Sivashinsky equations. J. Comput. Phys. 227(24), 9985–10017 (2008). https://doi.org/10.1016/j.jcp.2008.07.024

    Article  Google Scholar 

  32. Kim, J., Kang, K.: A numerical method for the ternary Cahn-Hilliard system with a degenerate mobility. Appl. Numer. Math. 59(5), 1029–1042 (2009). https://doi.org/10.1016/j.apnum.2008.04.004

    Article  Google Scholar 

  33. Elliott, C.M., French, D.A.: A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation. SIAM J. Numer. Anal. 26(4), 884–903 (1989). https://doi.org/10.1137/0726049

    Article  Google Scholar 

  34. Elliott, C.M., Garcke, H.: On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27(2), 404–423 (1996). https://doi.org/10.1137/S0036141094267662

    Article  Google Scholar 

  35. Zhang, S., Wang, M.: A nonconforming finite element method for the Cahn-Hilliard equation. J. Comput. Phys. 229(19), 7361–7372 (2010). https://doi.org/10.1016/j.jcp.2010.06.020

    Article  Google Scholar 

  36. Du, Q., Nicolaides, R.A.: Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28(5), 1310–1322 (1991). https://doi.org/10.1137/0728069

    Article  Google Scholar 

  37. Wodo, O., Ganapathysubramanian, B.: Computationally efficient solution to the Cahn-Hilliard equation: adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem. J. Comput. Phys. 230 (15), 6037–6060 (2011). https://doi.org/10.1016/j.jcp.2011.04.012

    Article  Google Scholar 

  38. Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy. Numer. Math. 63(1), 39–65 (1992). https://doi.org/10.1007/BF01385847

    Article  Google Scholar 

  39. Barrett, W.J., Blowey, F.J., Garcke, H.: Finite element approximation of a fourth order nonlinear degenerate parabolic equation. Numer. Math. 80(4), 525–556 (1998). https://doi.org/10.1007/s002110050377

    Article  Google Scholar 

  40. Elliott, C.M., French, D.A., Milner, F.A.: A second order splitting method for the Cahn-Hilliard equation. Numer. Math. 54(5), 575–590 (1989). https://doi.org/10.1007/BF01396363

    Article  Google Scholar 

  41. Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn-Hilliard equation. Numer. Math. 99(1), 47–84 (2004). https://doi.org/10.1007/s00211-004-0546-5

    Article  Google Scholar 

  42. He, Y., Liu, Y., Tang, T.: On large time-stepping methods for the Cahn-Hilliard equation. Appl. Numer. Math. 57(5–7), 616–628 (2007). https://doi.org/10.1016/j.apnum.2006.07.026. special Issue for the International Conference on Scientific Computing

    Article  Google Scholar 

  43. Gómez, H., Calo, V.M., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of the Cahn-Hilliard phase-field model. Comput. Methods Appl. Mech. Eng. 197(49–50), 4333–4352 (2008). https://doi.org/10.1016/j.cma.2008.05.003

    Article  Google Scholar 

  44. Wu, X., van Zwieten, G.J., van der Zee, K.G., Simsek, G.: Adaptive time-stepping for Cahn-Hilliard-type equations with application to diffuse-interface tumor-growth models. In: de Almeida, J.P.M., Díez, P., Tiago, C., Parés, N. (eds.) VI International Conference on Adaptive Modeling and Simulation (2013)

  45. Wells, G.N., Kuhl, E., Garikipati, K.: A discontinuous Galerkin method for the Cahn-Hilliard equation. J. Comput. Phys. 218(2), 860–877 (2006). https://doi.org/10.1016/j.jcp.2006.03.010

    Article  Google Scholar 

  46. Feng, X., Karakashian, O.A.: Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition. Math. Comput. 76(259), 1093–1117 (2007)

    Article  Google Scholar 

  47. Aristotelous, A.C., Karakashian, O.A., Wise, S.M.: Adaptive, second-order in time, primitive-variable discontinuous Galerkin schemes for a Cahn-Hilliard equation with a mass source. IMA J. Numer. Anal. 35(3), 1167–1198 (2015). https://doi.org/10.1093/imanum/dru035

    Article  Google Scholar 

  48. Kay, D., Styles, V., Süli, E.: Discontinuous Galerkin finite element approximation of the Cahn-Hilliard equation with convection. SIAM J. Numer. Anal. 47(4), 2660–2685 (2009). https://doi.org/10.1137/080726768

    Article  Google Scholar 

  49. Cockburn, B., Shu, C.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998). https://doi.org/10.1137/S0036142997316712

    Article  Google Scholar 

  50. Aizinger, V., Dawson, C., Cockburn, B., Castillo, P.: The local discontinuous Galerkin method for contaminant transport. Adv. Water Resour. 24(1), 73–87 (2000). https://doi.org/10.1016/S0309-1708(00)00022-1

    Article  Google Scholar 

  51. Xia, Y., Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for the Cahn-Hilliard type equations. J. Comput. Phys. 227(1), 472–491 (2007). https://doi.org/10.1016/j.jcp.2007.08.001

    Article  Google Scholar 

  52. Xia, Y., Xu, Y., Shu, C.-W.: Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system. Communications in Computational Physics 5(2), 821–835 (2009)

    Google Scholar 

  53. Guo, R., Xu, Y.: Efficient solvers of discontinuous Galerkin discretization for the Cahn-Hilliard equations. J. Sci. Comput. 58(2), 380–408 (2013). https://doi.org/10.1007/s10915-013-9738-4

    Article  Google Scholar 

  54. Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49(3), 435–479 (1977). https://doi.org/10.1103/RevModPhys.49.435

    Article  Google Scholar 

  55. Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22(3), 1150013 (2012). https://doi.org/10.1142/S0218202511500138

    Article  Google Scholar 

  56. Boyer, F., Minjeaud, S.: Numerical schemes for a three component Cahn-Hilliard model. ESAIM: M2AN 45(4), 697–738 (2011). https://doi.org/10.1051/m2an/2010072

    Article  Google Scholar 

  57. Jingxue, Y.: On the existence of nonnegative continuous solutions of the Cahn-Hilliard equation. J. Differ. Equ. 97(2), 310–327 (1992)

    Article  Google Scholar 

  58. Elliott, C.: The Cahn-Hilliard model for the kinetics of phase separation. In: Rodrigues, J.F. (ed.) Mathematical Models for Phase Change Problems, Vol. 88 of International Series of Numerical Mathematics, pp 35–73. Birkhäuser, Basel (1989). https://doi.org/10.1007/978-3-0348-9148-6_3

  59. Elliott, C., Songmu, Z.: On the Cahn-Hilliard equation. Arch. Ration. Mech. Anal. 96(4), 339–357 (1986)

    Article  Google Scholar 

  60. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks—part I: imaging and segmentation. Comput. Geosci. 50(Supplement C), 25–32 (2013). https://doi.org/10.1016/j.cageo.2012.09.005

    Article  Google Scholar 

  61. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 454(1978), 2617–2654 (1998). https://doi.org/10.1098/rspa.1998.0273

    Article  Google Scholar 

  62. Qiao, Z., Sun, S.: Two-phase fluid simulation using a diffuse interface model with Peng-Robinson equation of state. SIAM J. Sci. Comput. 36(4), B708–B728 (2014). https://doi.org/10.1137/130933745

    Article  Google Scholar 

  63. Elliott, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30(6), 1622–1663 (1993). https://doi.org/10.1137/0730084

    Article  Google Scholar 

  64. Eyre, J.D.: An unconditionally stable one-step scheme for gradient systems (1997)

  65. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Symposia BB – Computational & Mathematical Models of Microstructural Evolution, vol. 529 of MRS Proceedings. https://doi.org/10.1557/PROC-529-39 (1998)

  66. de Mello, E., da Silveira Filho, O.T.: Numerical study of the Cahn-Hilliard equation in one, two and three dimensions. Physica A: Statistical Mechanics and its Applications 347(1–4), 429–443 (2005). https://doi.org/10.1016/j.physa.2004.08.076

    Article  Google Scholar 

  67. Grün, G., Klingbeil, F.: Two-phase flow with mass density contrast: stable schemes for a thermodynamic consistent and frame-indifferent diffuse-interface model. J. Comput. Phys. 257, 708–725 (2014). https://doi.org/10.1016/j.jcp.2013.10.028

    Article  Google Scholar 

  68. Barrett, J.W., Blowey, J.F., Garcke, H.: Finite element approximation of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37(1), 286–318 (1999). https://doi.org/10.1137/S0036142997331669

    Article  Google Scholar 

  69. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Springer, Applied Mathematical Sciences (2004)

    Book  Google Scholar 

  70. Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics (2008)

  71. Chidyagwai, P., Mishev, I., Rivière, B.: On the coupling of finite volume and discontinuous Galerkin method for elliptic problems. J. Comput. Appl. Math. 235(8), 2193–2204 (2011). https://doi.org/10.1016/j.cam.2010.10.017

    Article  Google Scholar 

  72. Aristotelous, A.C.: Adaptive Discontinuous Galerkin Finite Element Methods for a Diffuse Interface Model of Biological Growth. Ph.D. Thesis, University of Tennessee (2011). http://trace.tennessee.edu/utk_graddiss/1051

  73. Lee, A.A., Münch, A., Süli, E.: Sharp-interface limits of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Appl. Math. 76(2), 433–456 (2016). https://doi.org/10.1137/140960189

    Article  Google Scholar 

  74. Ern, A., Stephansen, A.F., Zunino, P.: A discontinuous Galerkin method with weighted averages for advection–diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer. Anal. 29(2), 235–256 (2009). https://doi.org/10.1093/imanum/drm050

    Article  Google Scholar 

  75. Castillo, P.: Performance of discontinuous Galerkin methods for elliptic PDEs. SIAM J. Sci. Comput. 24(2), 524–547 (2002). https://doi.org/10.1137/S1064827501388339

    Article  Google Scholar 

  76. Hanisch, M.: Multigrid preconditioning for the biharmonic Dirichlet problem. SIAM J. Numer. Anal. 30(1), 184–214 (1993). https://doi.org/10.1137/0730009

    Article  Google Scholar 

  77. Armijo, L.: Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J. Math. 16 (1), 1–3 (1966)

    Article  Google Scholar 

  78. Kelley, C.T.: Solving nonlinear equations with newton’s method. Society for Industrial and Applied Mathematics (2003). https://doi.org/10.1137/1.9780898718898

  79. Fidkowski, K.J., Oliver, T.A., Lu, J., Darmofal, L.D.: P-multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. J. Comput. Phys. 207(1), 92–113 (2005). https://doi.org/10.1016/j.jcp.2005.01.005

    Article  Google Scholar 

  80. Luo, H., Baum, J.D., Löhner, R.: Fast p-multigrid discontinuous Galerkin method for compressible flows at all speeds. AIAA journal 46(3), 635–652 (2008)

    Article  Google Scholar 

  81. Aizinger, V., Kuzmin, D., Korous, L.: Scale separation in fast hierarchical solvers for discontinuous Galerkin methods. Appl. Math. Comput. 266, 838–849 (2015). https://doi.org/10.1016/j.amc.2015.05.047

    Article  Google Scholar 

  82. Thiele, C., Araya-Polo, M., Alpak, F.O., Riviere, B., Frank, F.: Inexact hierarchical scale separation: a two-scale approach for linear systems from discontinuous Galerkin discretizations. Comput. Math. Appl. (2017). https://doi.org/10.1016/j.camwa.2017.06.025

  83. Yue, P., Zhou, C., Feng, J.J.: Spontaneous shrinkage of drops and mass conservation in phase-field simulations. J. Comput. Phys. 223(1), 1–9 (2007)

    Article  Google Scholar 

  84. Bänsch, E., Morin, P., Nochetto, R.H.: Preconditioning a class of fourth order problems by operator splitting. Numer. Math. 118(2), 197–228 (2010). https://doi.org/10.1007/s00211-010-0333-4

    Article  Google Scholar 

  85. Grossman, M., Araya-Polo, M., Alpak, F., Frank, F., Limbeck, J., Sarkar, V.: Analysis of sparse matrix-vector multiply for large sparse linear systems. In: ECMOR XV – 15th European Conference on the Mathematics of Oil Recovery (2016). https://doi.org/10.3997/2214-4609.201601798. http://www.earthdoc.org/publication/publicationdetails/?publication=86246

  86. Grossman, M., Thiele, C., Araya-Polo, M., Frank, F., Alpak, F.O., Sarkar, V.: A survey of sparse matrix-vector multiplication performance on large matrices. In: Rice Oil & Gas High Performance Computing Workshop (2016). arXiv:1608.00636

  87. Thiele, C., Araya-Polo, M., Stoyanov, D., Frank, F., Alpak, F.O.: Asynchronous hybrid parallel spmv in an industrial application. In: 2016 International Conference on Computational Science and Computational Intelligence (CSCI), pp 1196–1201 (2016). https://doi.org/10.1109/CSCI.2016.0226

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Frank.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frank, F., Liu, C., Alpak, F.O. et al. A finite volume / discontinuous Galerkin method for the advective Cahn–Hilliard equation with degenerate mobility on porous domains stemming from micro-CT imaging. Comput Geosci 22, 543–563 (2018). https://doi.org/10.1007/s10596-017-9709-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-017-9709-1

Keywords