Skip to main content
Log in

Truncated conjugate gradient and improved LBFGS and TSVD for history matching

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We propose a new algorithm for solving the history matching problem in reservoir simulation, truncated conjugate gradient (TCG), which involves a model reparameterization based on the factorization of the prior covariance matrix, C M = L L T. We also revisit the LBFGS algorithm, framing it into the same reparametrization, introducing M-LBFGS. We present numerical evidence that this reparameterization has an important regularizing impact on the solution process. We show how TCG and M-LBFGS, as well as TSVD, can be implemented without the need of actually computing the factor L. Our numerical experiments, including the PUNQ-S3 and the Brugge cases, indicate that TCG and M-LBFGS are effective schemes for history matching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aanonsen, S.I., Nævdal, G., Oliver, D.S., Reynolds, A.C., Vallès, B.: The ensemble Kalman filter in reservoir engineering–a review. SPE J. 14(3), 393–412 (2009). https://doi.org/10.2118/117274-PA

    Article  Google Scholar 

  2. Averick, B.M., Carter, R.G., Moré, J.J.: MINPACK-2 Project. Argonne National Laboratory and University of Minnesota (1993). http://ftp.mcs.anl.gov/pub/MINPACK-2/csrch/

  3. Bell, B.M., Cathey, F.W.: The iterated Kalman filter upyear as a Gauss-Newton method. IEEE Trans. Automat. Contr. 38(2), 294–297 (1993)

    Article  Google Scholar 

  4. Chen, Y., Oliver, D.S.: Levenberg–Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification. Comput. Geosci. 17, 689–703 (2013). https://doi.org/10.1007/s10596-013-9351-5

    Article  Google Scholar 

  5. Dickstein, F., Goldfeld, P., Pfeiffer, G., Amorim, E., dos Santos, R., Gomez, S.: A study of the impact of 4D-seismic data on TSVD-based schemes for history matching. In: Latin American and Caribbean Petroleum Engineering Conference 2010, pp 643–653 (2010). https://doi.org/10.2118/138864-MS

  6. van den Doel, K., Ascher, U.: Adaptive and stochastic algorithms for EIT and DC resistivity problems with piecewise constant solutions and many measurements. SIAM J. Sci. Comput. 34(1), A185–A205 (2012). https://doi.org/10.1137/110826692

    Article  Google Scholar 

  7. Dong, Y., Oliver, D.S.: Quantitative use of 4D seismic data for reservoir description. SPE J. 10(1), 91–99 (2005). https://doi.org/10.2118/84571-PA

    Article  Google Scholar 

  8. Emerick, A.A., Moraes, R., Rodrigues, J.: History matching 4D seismic data with efficient gradient based methods. In: EUROPEC/EAGE Conference and Exhibition, 11–14 June, London (2007). https://doi.org/10.2118/107179-MS

  9. Emerick, A.A., Reynolds, A.C.: Ensemble smoother with multiple data assimilation. Comput. Geosci. 55, 3–15 (2013). https://doi.org/10.1016/j.cageo.2012.03.011

    Article  Google Scholar 

  10. Emerick, A.A., Reynolds, A.C.: Investigation of the sampling performance of ensemble-based methods with a simple reservoir model. Comput. Geosci. 17(2), 325–350 (2013). https://doi.org/10.1007/s10596-012-9333-z

    Article  Google Scholar 

  11. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic Publishers, Dordrecht (1996)

    Book  Google Scholar 

  12. Floris, F.J.T., Bush, M.D., Cuypers, M., Roggero, F., Syversveen, A.R.: Methods for quantifying the uncertainty of production forecasts: a comparative study. Pet. Geosci. 7(S), S87–S96 (2001). https://doi.org/10.1144/petgeo.7.S.S87

    Article  Google Scholar 

  13. Fossum, K., Mannseth, T., Oliver, D.S., Skaug, H.J.: Numerical comparison of ensemble Kalman filter and randomized maximum likelihood. In: ECMOR XIII - 13th European Conference on the Mathematics of oil Recovery (2012). https://doi.org/10.3997/2214-4609.20143174

  14. Gao, G., Reynolds, A.C.: An improved implementation of the LBFGS algorithm for automatic history matching. SPE J. 11(01), 5–17 (2006). https://doi.org/10.2118/90058-PA

    Article  Google Scholar 

  15. Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

  16. Hanke, M.: Regularizing properties of a truncated newton-CG algorithm for nonlinear inverse problems. Numer. Funct. Anal. Optim. 18(9–10), 971–993 (1997). https://doi.org/10.1080/01630569708816804

    Article  Google Scholar 

  17. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia (1998). https://doi.org/10.1137/1.9780898719697

  18. Imperial-College London, webpage of Department of Earth Science and Engineering, Standard Models: http://www.imperial.ac.uk/earth-science/research/research-groups/perm/standard-models/. (Accessed on 01/30/2017)

  19. Liu, N., Oliver, D.S.: Evaluation of Monte Carlo methods for assessing uncertainty. SPE J. 8(2), 188–195 (2003). https://doi.org/10.2118/84936-PA

    Article  Google Scholar 

  20. Makhlouf, E.M., Chen, W.H., Wasserman, M.L., Seinfeld, J.H.: A general history matching algorithm for three-phase, three-dimensional petroleum reservoirs. SPE Adv. Technol. Ser. 1(2), 83–92 (1993). https://doi.org/10.2118/20383-PA

    Article  Google Scholar 

  21. Manly, B.F.J.: Multivariate Statistical Methods: a Primer, 4th edn. CRC Press, Boca Raton, FL (2017)

  22. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006). https://doi.org/10.1007/978-0-387-40065-5

    Google Scholar 

  23. Oliver, D.S., Reynolds, A.C., Liu, N.: Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  24. Peters, E., Arts, R.J., Brouwer, G.K., Geel, C.R., Cullick, S., Lorentzen, R., Chen, Y., Dunlop, K.N.B., Vossepoel, F., Xu, R., Sarma, P., Alhutali, A., Reynolds, A.: Results of the Brugge benchmark study for flooding optimization and history matching. SPE Reserv. Eval. Eng. 13(3), 391–405 (2010). https://doi.org/10.2118/119094-PA

    Article  Google Scholar 

  25. Petrobras/CENPES: SIMPAR 2.0 Manual do Usuário (in Portuguese) (1995)

  26. Reynolds, A.C., Zafari, M., Li, G.: Iterative forms of the ensemble Kalman filter. In: Proceedings of 10th European Conference on the Mathematics of Oil Recovery. Amsterdam (2006). https://doi.org/10.3997/2214-4609

  27. Rodrigues, J.R.P.: Calculating Derivatives for History Matching in Reservoir Simulators. SPE Reservoir Simulation Symposium, 31 January-2 Feburary. The Woodlands, Texas (2005). https://doi.org/10.2118/93445-MS

    Google Scholar 

  28. Shirangi, M.G.: History matching production data and uncertainty assessment with an efficient TSVD parameterization algorithm. J. Petrol. Sci. Eng. 113, 54–71 (2014). https://doi.org/10.1016/j.petrol.2013.11.025

    Article  Google Scholar 

  29. Shirangi, M.G., Emerick, A.A.: An improved TSVD-based Levenberg–Marquardt algorithm for history matching and comparison with Gauss–Newton. J. Petrol. Sci. Eng. 143, 258–271 (2016). https://doi.org/10.1016/j.petrol.2016.02.026

    Article  Google Scholar 

  30. Tavakoli, R., Reynolds, A.C.: History matching with parameterization based on the SVD of a dimensionless sensitivity matrix. SPE J. 15(12), 495–508 (2010). https://doi.org/10.2118/118952-PA

    Article  Google Scholar 

  31. Tavakoli, R., Reynolds, A.C.: Monte Carlo simulation of permeability fields and reservoir performance predictions with SVD parameterization in RML compared with enKF. Comput. Geosci. 15(1), 99–116 (2011). https://doi.org/10.1007/s10596-010-9200-8

    Article  Google Scholar 

  32. Yang, P.H., Watson, A.T.: Automatic history matching with variable-metric methods. SPE Reserv. Eng. 3(3), 995–1001 (1988). https://doi.org/10.2118/16977-PA

    Article  Google Scholar 

  33. Zhang, F., Reynolds, A.C.: Optimization algorithms for automatic history matching of production data. In: ECMOR VIII - 8th European Conference on the Mathematics of oil Recovery (2002). https://doi.org/10.3997/2214-4609.201405958

  34. Zhao, H., Li, G., Reynolds, A., Yao, J.: Large-scale history matching with quadratic interpolation models. Comput. Geosci. 17(1), 117–138 (2013). https://doi.org/10.1007/s10596-012-9320-4

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Petrobras (Brazil) for the support provided in the development of this work. F. Dickstein also acknowledges the support of CNPq (Brazil). Finally, the authors thank ESSS for providing their software Kraken for pre- and post-processing of simulation data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávio Dickstein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dickstein, F., Goldfeld, P., Pfeiffer, G.T. et al. Truncated conjugate gradient and improved LBFGS and TSVD for history matching. Comput Geosci 22, 309–327 (2018). https://doi.org/10.1007/s10596-017-9694-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-017-9694-4

Keywords

Navigation