Skip to main content
Log in

A finite volume scheme with improved well modeling in subsurface flow simulation

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We present the latest enhancement of the nonlinear monotone finite volume method for the near-well regions. The original nonlinear method is applicable for diffusion, advection-diffusion, and multiphase flow model equations with full anisotropic discontinuous permeability tensors on conformal polyhedral meshes. The approximation of the diffusive flux uses the nonlinear two-point stencil which reduces to the conventional two-point flux approximation (TPFA) on cubic meshes but has much better accuracy for the general case of non-orthogonal grids and anisotropic media. The latest modification of the nonlinear method takes into account the nonlinear (e.g., logarithmic) singularity of the pressure in the near-well region and introduces a correction to improve accuracy of the pressure and the flux calculation. In this paper, we consider a linear version of the nonlinear method waiving its monotonicity for sake of better accuracy. The new method is generalized for anisotropic media, polyhedral grids and nontrivial cases such as slanted, partially perforated wells or wells shifted from the cell center. Numerical experiments show noticeable reduction of numerical errors compared to the original monotone nonlinear FV scheme with the conventional Peaceman well model or with the given analytical well rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertolazzi, E., Manzini, G.: A second-order maximum principle preserving finite volume method for steady convection-diffusion problems. SIAM J. Numer. Anal. 43(5), 2172–2199 (2005)

    Article  Google Scholar 

  2. Chernyshenko, A., Vassilevski, Y.: A finite volume scheme with the discrete maximum principle for diffusion equations on polyhedral meshes. Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects, 197–205 (2014)

  3. Danilov, A., Vassilevski, Y.: A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes. Russ. J. Numer. Anal. Math. Model. 24(3), 207–227 (2009)

    Article  Google Scholar 

  4. Ding, Y., Jeannin, L.: A new methodology for singularity modelling in flow simulations in reservoir engineering (2001)

  5. Dotlić, M., Vidović, D., Pokorni, B., Pušić, M., Dimkić, M.: Second-order accurate finite volume method for well-driven flows. J. Comp. Phys. 307, 460–475 (2016)

    Article  Google Scholar 

  6. Droniou, J.: Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24(8), 1575–1619 (2014)

    Article  Google Scholar 

  7. Gao, Z.M., Wu, J.M.: A small stencil and extremum-preserving scheme for anisotropic diffusion problems on arbitrary 2D and 3D meshes. J. Comp. Phys. 250, 308–331 (2013)

    Article  Google Scholar 

  8. Haitjema, H.M.: Analytic element modeling of groundwater flow. ClassPak Publishing (2005)

  9. LePotier, C.: Schema volumes finis monotone pour des operateurs de diffusion fortement anisotropes sur des maillages de triangle non structures. C. R. Acad. Sci. Paris, Ser. I 341, 787–792 (2005)

    Article  Google Scholar 

  10. Lipnikov, K., Moulton, D., Svyatskiy, D.: A multiscale multilevel mimetic (m3) method for well-driven flows in porous media. Procedia Comput. Sci. 1(1), 771–779 (2010)

    Article  Google Scholar 

  11. Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes. J. Comp. Phys. 228(3), 703–716 (2009)

    Article  Google Scholar 

  12. Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes. J. Comp. Phys. 229, 4017–4032 (2010)

    Article  Google Scholar 

  13. Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: Minimal stencil finite volume scheme with the discrete maximum principle. Russ. J. Numer. Anal. Math. Model. 27(4), 369–385 (2012)

    Article  Google Scholar 

  14. Nikitin, K., Novikov, K., Vassilevski, Y.: Nonlinear finite volume method with discrete maximum principle for the two-phase flow model. Lobachevskii J. Math. 37(4) (2016)

  15. Nikitin, K., Terekhov, K., Vassilevski, Y.: A monotone nonlinear finite volume method for diffusion equations and multiphase flows. Comp. Geosci. 18(3), 311–324 (2014). doi:10.1007/s10596-013-9387-6

    Article  Google Scholar 

  16. Nikitin, K., Terekhov, K., Vassilevski, Y.: Multiphase flows – non- linear monotone FV scheme and dynamic grids. ECMOR XIV (2014)

  17. Nikitin, K., Vassilevski, Y.: A monotone nonlinear finite volume method for advection-diffusion equations on unstructured polyhedral meshes in 3D. Russ. J. Numer. Anal. Math. Model. 25(4), 335–358 (2010)

    Article  Google Scholar 

  18. Peaceman, D.W.: Interpretation of well-block pressures in numerical reservoir simulation. SPEJ 18(3), 183–194 (1978)

    Article  Google Scholar 

  19. Peaceman, D. W.: Interpretation of well-block pressures in numerical reservoir simulation with non-square grid blocks and anisotropic permeability. SPEJ 23(3), 531–543 (1983)

    Article  Google Scholar 

  20. Sheng, Z., Yuan, G.: The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes. J. Comp. Physiol. 230(7), 2588–2604 (2011)

    Article  Google Scholar 

  21. Terekhov, K., Vassilevski, Y.: Two-phase water flooding simulations on dynamic adaptive octree grids with two-point nonlinear fluxes. Russ. J. Numer. Anal. Math. Model. 28(3), 267–288 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by RFBR grant 17-01-00886, Russian Federation President Grant MK-2951.2017.1, and ExxonMobil Upstream Research Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill Nikitin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kramarenko, V., Nikitin, K. & Vassilevski, Y. A finite volume scheme with improved well modeling in subsurface flow simulation. Comput Geosci 21, 1023–1033 (2017). https://doi.org/10.1007/s10596-017-9685-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-017-9685-5

Keywords

Navigation