Skip to main content

A modified randomized maximum likelihood for improved Bayesian history matching

Abstract

Randomized maximum likelihood is known in the petroleum reservoir community as a Bayesian history matching technique by means of minimizing a stochastic quadratic objective function. The algorithm is well established and has shown promising results in several applications. For linear models with linear observation operator, the algorithm samples the posterior density accurately. To improve the sampling for nonlinear models, we introduce a generalized version in its simplest form by re-weighting the prior. The weight term is motivated by a sufficiency condition on the expected gradient of the objective function. Recently, an ensemble version of the algorithm was proposed which can be implemented with any simulator. Unfortunately, the method has some practical implementation issues due to computation of low rank pseudo inverse matrices and in practice only the data mismatch part of the objective function is maintained. Here, we take advantage of the fact that the measurement space is often much smaller than the parameter space and project the prior uncertainty from the parameter space to the measurement space to avoid over fitting of data. The proposed algorithms show good performance on synthetic test cases including a 2D reservoir model.

This is a preview of subscription content, access via your institution.

References

  1. Anderson, J.L.: A non-Gaussian ensemble filter update for data assimilation. Mon. Wea. Rev. 138(11), 4186–4198 (2010). doi:10.1175/2010MWR3253.1

    Article  Google Scholar 

  2. Bardsley, J.M., Solonen, A., Haario, H., Laine, M.: Randomize-then-optimize: A method for sampling from posterior distribution in nonlinear inverse problems. SIAM J. Sci. Comput. 36(4), A1895–A1910 (2014)

    Article  Google Scholar 

  3. Bergemann, K., Reich, S.: A mollified ensemble Kalman filter. Q. J. R. Meteorol. Soc. 136(651), 1636–1643 (2010)

    Article  Google Scholar 

  4. Chen, Y., Oliver, D.S.: Ensemble randomized maximum likelihood method as an iterative ensemble smoother. Math. Geosci. 44(1), 1–26 (2012)

    Article  Google Scholar 

  5. Chen, Y., Oliver, D.S.: Levenberg-Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification. Comput. Geosci. 17, 689–703 (2013)

    Article  Google Scholar 

  6. Chen, Y., Oliver, D.S.: History matching of the Norne full-field model with an iterative ensemble smoother. SPE Reserv. Eval. Eng. 17(02), 244–256 (2014)

    Article  Google Scholar 

  7. Cotter, C.J., Reich, S.: Ensemble filter techniques for intermittent data assimilation-a survey. arXiv:1208.6572 (2012)

  8. Cotter, S.L., Roberts, G.O., Stuart, A., White, D., et al.: MCMC methods for functions: modifying old algorithms to make them faster. Stat. Sci. 28(3), 424–446 (2013)

    Article  Google Scholar 

  9. El Moselhy, T.A., Marzouk, Y.M.: Bayesian inference with optimal maps. J. Comput. Phys. 231, 7815–7850 (2012)

    Article  Google Scholar 

  10. Emerick, A., Reynolds, A.: Ensemble smoother with multiple data assimilation. Comput. Geosci. 55, 3–15 (2013)

    Article  Google Scholar 

  11. Evensen, G.: Data Assimilation: The Ensemble Kalman Filter. Springer (2007)

  12. Evensen, G., Van Leeuwen, P.J.: An ensemble Kalman smoother for nonlinear dynamics. Mon. Weather Rev. 128(6), 1852–1867 (2000)

  13. Fossum, K., Mannseth, T.: Parameter sampling capabilities of sequential and simultaneous data assimilation: I. analytical comparison. Inverse Probl. 30(114002), (2014)

  14. Fossum, K., Mannseth, T.: Parameter sampling capabilities of sequential and simultaneous data assimilation: I. statistical analysis of numerical results. Inverse Probl. 30(114003), (2014)

  15. Hanke, M.: A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems. Inverse Probl. 13, 79–95 (1997)

  16. Hoteit, I., Pham, D. -T., Triantafyllou, G., Korres, G.: A New approximative solution of the optimal nonlinear filter for Data Assimilation in Meteorology and Oceanography. Mon. Weather Rev. 136, 317–334 (2008)

    Article  Google Scholar 

  17. Jansen, J.D.: SimSim: A simple reservoir simulator. Departement of Geotechnology, TU, Delft (2011)

    Google Scholar 

  18. Kitandis, P.K.: Quasilinear geostatistical theory for inversing. Water Resour. Res. 31(10), 2411–2419 (1995)

    Article  Google Scholar 

  19. Kitanidis, P.K.: Quasi-linear geostatistical theory for inversing. Water Resour. Res. 31(10), 2411–2419 (1995)

    Article  Google Scholar 

  20. Nævdal, G., Mannseth, T., Vefring, E.H.: Near-well reservoir monitoring through ensemble Kalman filter. In: SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, pp. SPE75235 (2002)

  21. Oliver, D.S.: Minimization for conditional simulation: Relationship to optimal transport. J. Comput. Phys. 265, 1–15 (2014)

    Article  Google Scholar 

  22. Oliver, D.S.: Metropolized randomized maximum likelihood for sampling from multimodal distributions arXiv:1507.08563v1 [stat.CO] (2015)

  23. Oliver, D.S., Chen, Y.: Recent progress on reservoir history matching: a review. Comput. Geosci. 15(1), 185–221 (2011)

    Article  Google Scholar 

  24. Oliver, D.S., He, N., Reynolds, A.C.: Conditioning permeability fields to pressure data. In: European Conference for the Mathematics of Oil Recovery, V, pp. 1–11 (1996)

  25. Shirangi, M.G.: History matching production data and uncertainty assessment with an efficient TSVD parameterization algorithm. J. Pet. Sci. Eng. 113, 54–71 (2014)

    Article  Google Scholar 

  26. Shirangi, M.G., Emerick, A.A.: An improved TSVD-based Levenberg-Marquardt algorithm for history matching and comparison with Gauss-Newton. J. Pet. Sci. Eng. 143, 258–271 (2016)

    Article  Google Scholar 

  27. Skjervheim, J.-A., Evensen, G.: An ensemble smoother for assisted history matching. In SPE Reservoir simulations symposium. The Woodlands, Texas, pp. 21–23. Society of Petroleum Engineers. SPE141929-MS (2011)

  28. Stordal, A.: Iterative Bayesian inversion with gaussian mixtures: finite sample implementation and large sample asymptotics. Comput. Geosci. 19(1), 1–15 (2015). ISSN 1420-0597. doi:10.1007/s10596-014-9444-9

    Article  Google Scholar 

  29. Stordal, A., Elsheikh, A.: Iterative ensemble smoothers in the annealed importance sampling framework. Adv. Water Resour. 86(Part A), 231–239 (2015)

    Article  Google Scholar 

  30. Stordal, A., Lorentzen, R.: An iterative version of the adaptive gaussian mixture filter. Comput. Geosci. 18(3), 579–595 (2014). doi:10.1007/s10596-014-9402-6

    Article  Google Scholar 

  31. Stordal, A., Karlsen, H., Nævdal, G., Skaug, H., Vallès, B.: Bridging the ensemble Kalman filter and particle filters. Comput. Geosci. 15(2), 293–305 (2011)

    Article  Google Scholar 

  32. Tavakoli, R., Reynolds, A.C.: History matching with parameterization based on the singular value decomposition of a dimensionless sensitivity matrix. SPE J. 15(2), 495–508 (June 2010)

  33. Tavakoli, R., Reynolds, A.C.: Monte Carlo simulation of permeability fields and reservoir performance predictions with SVD parameterization compared with EnKF. Comput. Geosci. 15, 99–116 (2011)

    Article  Google Scholar 

  34. Valestrand, R., Nævdal, G., Stordal, A.S.: Application of the adaptive Gaussian mixture filter to history match a real field case. In: ECMOR XIII – 13 th European Conference on the Mathematics of Oil Recovery. EAGE, pp. 10–13 (2012)

  35. Vo, H.X., Durlofsky, L.J.: A new differentiable parameterization based on prinicipal component analysis for the low-dimensional representation of complex geological models. Math. Geosci. 46, 775–813 (2014)

    Article  Google Scholar 

  36. Vo, H.X., Durlofsky, L.J.: Data assimilation and uncertainty assessment for complex geological models using a new PCA-based parameterization. Comput. Geosci. 19, 747–767 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The first author acknowledges the Research Council of Norway and the industrial participants, Eni, Petrobras and Total, for financial support through the joint CIPR/IRIS Petromaks project ’4D Seismic History Matching’. The second author acknowledges the Research Council of Norway and the industrial participants, ConocoPhillips Skandinavia AS, BP Norge AS, Det Norske Oljeselskap AS, Eni Norge AS, Maersk Oil Norway AS, DONG Energy AS, Denmark, Statoil Petroleum AS, Engie E&P NORGE AS, Lundin Norway AS, Halliburton AS, Schlumberger Norge AS, Wintershall Norge AS, of The National IOR Centre of Norway for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas S. Stordal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stordal, A.S., Nævdal, G. A modified randomized maximum likelihood for improved Bayesian history matching. Comput Geosci 22, 29–41 (2018). https://doi.org/10.1007/s10596-017-9664-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-017-9664-x

Keywords

  • Bayesian inversion
  • Ensemble smoothers
  • History matching
  • Randomized maximum likelihood