Advertisement

Computational Geosciences

, Volume 21, Issue 5–6, pp 1173–1188 | Cite as

Non-equilibrium phase behavior of hydrocarbons in compositional simulations and upscaling

  • Ilya M. Indrupskiy
  • Olga A. Lobanova
  • Vadim R. Zubov
Original Paper

Abstract

Numerical models widely used for hydrocarbon phase behavior and compositional flow simulations are based on assumption of thermodynamic equilibrium. However, it is not uncommon for oil and gas-condensate reservoirs to exhibit essentially non-equilibrium phase behavior, e.g., in the processes of secondary recovery after pressure depletion below saturation pressure, or during gas injection, or for condensate evaporation at low pressures. In many cases, the ability to match field data with equilibrium model depends on simulation scale. The only method to account for non-equilibrium phase behavior adopted by the majority of flow simulators is the option of limited rate of gas dissolution (condensate evaporation) in black oil models. For compositional simulations, no practical yet thermodynamically consistent method has been presented so far except for some upscaling techniques in gas injection problems. Previously reported academic non-equilibrium formulations have a common drawback of doubling the number of flow equations and unknowns compared with the equilibrium formulation. In the paper, a unified thermodynamically consistent formulation for compositional flow simulations with non-equilibrium phase behavior model is presented. Same formulation and a special scale-up technique can be used for upscaling of an equilibrium or non-equilibrium model to a coarse-scale non-equilibrium model. A number of test cases for real oil and gas-condensate mixtures are given. Model implementation specifics in a flow simulator are discussed and illustrated with test simulations. A non-equilibrium constant volume depletion algorithm is presented to simulate condensate recovery at low pressures in gas-condensate reservoirs. Results of satisfactory model matching to field data are reported and discussed.

Keywords

Non-equilibrium phase behavior Compositional flow simulations Phase transitions Upscaling Hydrocarbon mixtures Non-equilibrium constant volume depletion 

Mathematics Subject Classification (2010)

76T30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Authors are thankful to A.I. Brusilovsky, E.S. Zakirov, K. Yu. Bogachev, E.E. Gorodetskii ‡, and T.S. Yushchenko for fruitful discussions during the study and gratefully acknowledge the permission from Rock Flow Dynamics to incorporate and test the developed algorithms in the numerical code of the RFD tNavigator flow simulator.

References

  1. 1.
    Al-Wahaibi, Y.M., Muggeridge, A.H., Grattoni, A.C: Gas/oil nonequilibrium in multicontact miscible displacement within homogeneous porous media. Paper SPE 99727 presented at SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma (2006)Google Scholar
  2. 2.
    Aziz, K., Settari, A: Petroleum Reservoir Simulation. Elsevier, New York (1979)Google Scholar
  3. 3.
    Aziz, K., Wong, T: Considerations in the development of multipurpose reservoir simulation models. First and Second Forum on Reservoir Simulation, Alpbach, Austria, pp. 77–208 (1989)Google Scholar
  4. 4.
    Barker, J.W., Fayers, F.J: Transport coefficients for compositional simulation with coarse grids in heterogeneous media. SPE Adv. Technol. Ser. 2(2), 103–112 (1994). SPE Paper 22591CrossRefGoogle Scholar
  5. 5.
    Bourgeois, M.J., Gommard, D.R., Gouas, H.: Simulating early gas breakthrough in undersaturated oil using alpha-factors. Paper SPE 161460 presented at Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, 11–14 November (2012)Google Scholar
  6. 6.
    Brilliant L.S., Evdoshchuk P.A., Plitkina Yu.A., et al.: Study of effective brownfield development by the means of oil resaturation with evolved gas in situ. Neftyanoye Khoziaystvo (Oil Industry). (4):54–59 (In Russian) (2014)Google Scholar
  7. 7.
    Brusilovsky, A.I: Fazovye prevrashcheniya pri razrabotke mestorozhdeniy nefti i gaza (Phase Transitions in the Development of Oil and Gas Fields). Graal Publ., Moscow (2002). 575 p. (In Russian)Google Scholar
  8. 8.
    Buleyko, V.M.: Zakonomernosti fazovykh prevrasheniy uglevodorodnykh smesey v neftegazonosnykh plastakh razrabatyvaemykh mestorozhdeniy (The principles of phase behavior of hydrocarbon mixtures in oil- and gas-bearing formations of developed reservoirs) Dr.Tech.Sci Thesis, Moscow, VNIIGAS-OGRI RAS, 277 p. (In Russian) (2007)Google Scholar
  9. 9.
    Coats, K., Smith, B: Dead-end pore volume and dispersion in porous media. SPE J. 41, 73–84 (1964)CrossRefGoogle Scholar
  10. 10.
    Coats, K.H.: Implicit compositional simulation of single-porosity and dual-porosity reservoirs. SPE 18427 presented at the SPE Symposium on Reservoir Simulation, Houston, Texas, 6–8 February (1989)Google Scholar
  11. 11.
    Coats, K.H., Thomas, L.K., Pierson, R.G.: Simulation of miscible flow including bypassed oil and dispersion control. SPE Reserv. Eval. Eng. 5, 10 (2007)Google Scholar
  12. 12.
    Danesh, A.: PVT and Phase Behavior of Petroleum Reservoir Fluids. Elsevier Science B.V. (1998)Google Scholar
  13. 13.
    Dolgushin, N.V.: Metodologia izucheniya gazokondensatnoy kharakteristiki neftegazokondensatnikh mestorojdeniy s vysokim soderjaniem kondensata i bolshim etajom gazonosnosti (Methodology of gas condensate characteristics study of oil-gas-condensate fields with high condensate content and large gas column). DrSci Thesis, Ukhta, Russia (2007)Google Scholar
  14. 14.
    Firoozabadi, A: Thermodynamics of Hydrocarbon Reservoirs. McGraw-Hill, New York (1999)Google Scholar
  15. 15.
    Gorodetskii, E.E., Voronov, V.P., Muratov, A.R., et al.: Study of non-equilibrium phase transitions in binary and ternary hydrocarbon mixtures. OGRI RAS Research Report, Moscow (2005)Google Scholar
  16. 16.
    Indrupskiy, I.M., Lobanova, O.A: Simulation of nonequilibrium phase behavior of hydrocarbon mixtures. Dokl. Earth Sci. 463(1), 695–698 (2015)CrossRefGoogle Scholar
  17. 17.
    Iranshahr, A., Chen, Yu., Voskov, D: A coarse-scale compositional model. Comput. Geosci. 18, 797–815 (2014)CrossRefGoogle Scholar
  18. 18.
    Jhavery, B.S., Youngren, G.K: Three-parameter modification of the Peng-Robinson equation of state to improve volumetric predictions. SPE Reserv. Eng. 3, 1033 (1988)CrossRefGoogle Scholar
  19. 19.
    Lobanova, O.A., Indrupskiy, I.M: Non-equilibrium and scale effects in modeling phase behavior of hydrocarbon mixtures (Neravnovesnye i masshtabniye effekty v modelirovanii fazovogo povedeniya uglevodorodnykh smesey). Neft. Khoz. (Oil Industry) 2012(6), 18–23 (2012)Google Scholar
  20. 20.
    Lobanova, O.A., Indrupskiy, I.M.: Modelling Non-Equilibrium Phase Behavior of Hydrocarbon Mixtures. Paper SPE 176632-MS presented at SPE Russian Petroleum Technology Conference, 26–28 October, Moscow (2015)Google Scholar
  21. 21.
    Lobanova, O.A., Zubov, V.R., Indrupskiy, I.M: Neravnovesnoye fazovoye povedeniye uglevodorodnykh smesey. Chast 1: eksperimenty (Non-equilibrium phase behavior of hydrocarbon mixtures. Part 1: experiments). Avtomatizatsiya, telemekhanizatsiya i svyaz v neftyanoy promyshlennosti 11, 18–23 (2014)Google Scholar
  22. 22.
    Lobanova, O.A., Indrupskiy, I.M., Yushchenko, T.S.: Modeling non-equilibrium dynamics of condensate recovery for mature gas-condensate fields. SPE Russian Petroleum Technology Conference and Exhibition, Moscow, Russia, 24–26 October, SPE 181977 (2016)Google Scholar
  23. 23.
    Michelsen, M.L: The isothermal flash problem. Part I. Stability. Fluid Phase Equilib. 9, 1–19 (1982a)Google Scholar
  24. 24.
    Michelsen, M.L: The isothermal flash problem. Part II. Phase-split calculation. Fluid Phase Equilib. 9, 21–40 (1982b)Google Scholar
  25. 25.
    Nigmatulin, R.I., Surguchev, M.L., Fedorov, K.M., et al.: Mathematical modelling of micellar-polymer-gas flooding. Dokl. USSR Acad. Sci. 255(1), 52–56 (1980)Google Scholar
  26. 26.
    Nghiem, L.X., Sammon, P.H.: A non-equilibrium equation-of-state compositional simulator. Paper SPE 37980 presented at SPE Reservoir Simulation Symposium, Dallas, USA, 8–11 June (1997)Google Scholar
  27. 27.
    Nghiem, L.X., Li, Y.K., Agarwal, R.K.: A method for modelling incomplete mixing in compositional simulation of unstable displacements. Reservoir Simulation Symposium, Houston, USA, 6–8 Feb, 1989. SPE 18439 (1989)Google Scholar
  28. 28.
    Onsager, L: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931)CrossRefGoogle Scholar
  29. 29.
    Patacchini, L., Duchenne, S., Bourgeois, M., Moncorge, A., Pallotta, Q: Simulation of residual oil saturation in near-miscible gas flooding through saturation-dependent tuning of equilibration constants. Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, 10–13 November 2014. SPE 1714806 (2014)Google Scholar
  30. 30.
    Pedersen, K.S., Christensen, P.L: Phase Behavior of Petroleum Reservoir Fluids. Taylor & Francis, Boca Raton (2006)Google Scholar
  31. 31.
    Peng, D.Y., Robinson, D.B: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15, 59 (1976)CrossRefGoogle Scholar
  32. 32.
    Rozenberg, M.D., Kundin, S.A: Mnogofaznaya mnogokomponentnaya fil’tratsiya pri dobyche nefti I gaza (Multiphase multicomponent flow at oil and gas development), 335 p. Nedra Publ., Moscow (1976)Google Scholar
  33. 33.
    Salehi, A., Voskov, D.V., Tchelepi, H.A: Thermodynamically consistent transport coefficients for upscaling of compositional processes. Paper SPE 163576 presented at SPE Reservoir Simulation Symposium, Woodlands, Texas USA, 18–20 February (2013)Google Scholar
  34. 34.
    Usenko, V.F: Issledovaniye neftyanykh mestorojdeniy pri davleniyah nije davleniya nasystcheniya (Oil Reservoir Testing at Pressures Below Saturation Pressure), 214 p. Nedra Publ., Moscow (1967)Google Scholar
  35. 35.
    Whitson, C.H., Brule, M.R.: Phase Behavior. SPE Monograph (Henry L. Doherty) Series, vol. 20, SPE, Richardson, Texas USA, 233 p. (2000)Google Scholar
  36. 36.
    Yushchenko, T.S., Brusilovsky, A.I: Mathematical modeling of gas-condensate mixture PVT-properties including presence of brine in reservoir. Fluid Phase Equilib. 409, 37–48 (2016)CrossRefGoogle Scholar
  37. 37.
    Zubov, V.R., Indrupskiy, I.M., Bogachev, K.Yu.: Compositional simulator with non-equilibrium phase transitions. SPE Russian Petroleum Technology Conference and Exhibition, 24–26 October 2016, Moscow, Russia. SPE 182001-MS (2016)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Ilya M. Indrupskiy
    • 1
  • Olga A. Lobanova
    • 1
  • Vadim R. Zubov
    • 2
  1. 1.Oil-, Gas-, Condensate Recovery LabOil and Gas Research Institute, Russian Academy of Sciences (OGRI RAS)MoscowRussian Federation
  2. 2.Rock Flow DynamicsMoscowRussia

Personalised recommendations