Advertisement

Computational Geosciences

, Volume 21, Issue 4, pp 645–663 | Cite as

Flow-based dissimilarity measures for reservoir models: a spatial-temporal tensor approach

  • Edwin Insuasty
  • Paul M. J. Van den Hof
  • Siep Weiland
  • Jan-Dirk Jansen
Open Access
Original Paper

Abstract

In reservoir engineering, it is attractive to characterize the difference between reservoir models in metrics that relate to the economic performance of the reservoir as well as to the underlying geological structure. In this paper, we develop a dissimilarity measure that is based on reservoir flow patterns under a particular operational strategy. To this end, a spatial-temporal tensor representation of the reservoir flow patterns is used, while retaining the spatial structure of the flow variables. This allows reduced-order tensor representations of the dominating patterns and simple computation of a flow-induced dissimilarity measure between models. The developed tensor techniques are applied to cluster model realizations in an ensemble, based on similarity of flow characteristics.

Keywords

Reduced-order modeling Tensor decompositions Tensor algebra Flow characterization 

Notes

Acknowledgements

We acknowledge the discussions with Dr.Tzu-hao Yeh from the Quantitative Reservoir Management group at Shell for his views on the potential application of the techniques presented in this paper on field cases. The authors acknowledge financial support from the Recovery Factory program sponsored by Shell Global Solutions International.

References

  1. 1.
    Afra, S., Gildin, E.: Permeability parametrization using higher order singular value decomposition (hosvd). In: 2013 12th International Conference on Machine Learning and Applications (ICMLA), vol. 2, pp. 188–193. IEEE (2013). doi: 10.1109/icmla.2013.121
  2. 2.
    Afra, S., Gildin, E., Tarrahi, M.: Heterogeneous reservoir characterization ussing efficient parameterization through higher order svd (hosvd). In: American Control Conference, pp. 147–152, Portland, Oregon (2014). doi: 10.1109/acc.2014.6859,246
  3. 3.
    Aloise, D., Deshpande, A., Hansen, P., Popat, P.: Np-hardness of euclidean sum-of-squares clustering. Mach. Learn. 75(2), 245–248 (2009). doi: 10.1007/s10,994-009-5103-0 CrossRefGoogle Scholar
  4. 4.
    Aziz, K., Settari, A.: Petroleum reservoir simulation, vol. 476 Applied Science Publishers London (1979)Google Scholar
  5. 5.
    Bader, B.W., Kolda, T.G., et al.: Matlab tensor toolbox version 2.6. Available online http://www.sandia.gov/tgkolda/TensorToolbox/ (2015)
  6. 6.
    Barros, E.G.D., Van den Hof, P.M.J., Jansen, J.D.: Value of information in closed-loop reservoir management. Comput. Geosci. 20(3), 737–749 (2016). doi: 10.1007/s10,596-015-9509-4 CrossRefGoogle Scholar
  7. 7.
    Borg, I., Groenen, P.J.F.: Modern multidimensional scaling: Theory and applications. Springer. doi: 10.4324/9780203767719 (2005)
  8. 8.
    Caers, J., Park, K., Scheidt, C.: Modeling uncertainty of complex earth systems in metric space. In: Handbook of Geomathematics, pp. 865–889. Springer (2010). doi: 10.1007/978-3-642-01,546-5-29
  9. 9.
    Cardoso, M.A., Durlofsky, L.J., Sarma, P.: Development and application of reduced-order modeling procedures for subsurface flow simulation. Int. J. Numer. Methods Eng. 77(9), 1322–1350 (2009). doi: 10.1002/nme.2453 CrossRefGoogle Scholar
  10. 10.
    Chen, Y., Oliver, D.S., Zhang, D., et al: Efficient ensemble-based closed-loop production optimization. SPE J. 14(04), 634–645 (2009). doi: 10.2118/112,873-pa CrossRefGoogle Scholar
  11. 11.
    De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000). doi: 10.1137/s0895479896305,696 CrossRefGoogle Scholar
  12. 12.
    De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank- (r 1,r 2, ...,r n) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21 (4), 1324–1342 (2000). doi: 10.1137/s0895479898346,995 CrossRefGoogle Scholar
  13. 13.
    Durlofsky, L.J.: Upscaling and gridding of fine scale geological models for flow simulation. In: 8th International Forum on Reservoir Simulation Iles Borromees, Stresa, Italy, pp. 20–24 (2005). https://pangea.stanford.edu/ERE/research/suprihw/durlofsky/upsc_grid_review_ifrs_2005.pdf
  14. 14.
    Gildin, E., Afra, S.: Efficient inference of reservoir parameter distribution utilizing higher order svd reparameterization. In: ECMOR XIV-14th European conference on the mathematics of oil recovery. Catania, Italy (2014). doi: 10.3997/2214-4609.20141826
  15. 15.
    Golub, G.H., Van Loan, C.F.: Matrix computations, vol. 3. JHU Press. doi: 10.1137/1028073 (2012)
  16. 16.
    Insuasty, E., Van den Hof, P.M.J., Weiland, S., Jansen, J.D.: Tensor-based reduced order modeling in reservoir engineering: An application to production optimization. IFAC-PapersOnLine 48(6), 254–259 (2015). doi: 10.1016/j.ifacol.2015.08.040 CrossRefGoogle Scholar
  17. 17.
    Jansen, J.D.: A systems description of flow through porous media. Springer Briefs in Earth Sciences, Springer. doi: 10.1007/978-3-319-00260-6 (2013)
  18. 18.
    Jansen, J.D., Bosgra, O.H., Van den Hof, P.M.J.: Model-based control of multiphase flow in subsurface oil reservoirs. J. Process Control 18(9), 846–855 (2008). doi: 10.1016/j.jprocont.2008.06.011 CrossRefGoogle Scholar
  19. 19.
    Jansen, J.D., Fonseca, R.M., Kahrobaei, S., Siraj, M.M., Van Essen, G.M., Van den Hof, P.M.J.: The egg model–a geological ensemble for reservoir simulation. Geosci. Data J. 1(2), 192–195 (2014). doi: 10.1002/gdj3.21 CrossRefGoogle Scholar
  20. 20.
    Jegelka, S., Sra, S., Banerjee, A.: Approximation algorithms for tensor clustering. In: Algorithmic learning theory, pp. 368–383. Springer (2009). doi: 10.1007/978-3-642-04,414-4-30
  21. 21.
    Ketchen, D.J., Shook, C.L.: The application of cluster analysis in strategic management research: an analysis and critique. Strateg. Manag. J. 17(6), 441–458 (1996). doi: 10.1002/(SICI)1097-0266(199,606)17:6<441::AID-SMJ819>3.0.CO;2-G CrossRefGoogle Scholar
  22. 22.
    Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009). doi: 10.1137/07070,111x CrossRefGoogle Scholar
  23. 23.
    Krogstad, S.: A sparse basis pod for model reduction of multiphase compressible flow. In: SPE Reservoir Simulation Symposium. The Woodlands, Texas. doi: 10.2118/141973-ms (2011)
  24. 24.
    Lie, K.A., Krogstad, S., Ligaarden, I.S., Natvig, J.R., Nilsen, H.M., Skaflestad, B.: Open-source matlab implementation of consistent discretisations on complex grids. Comput. Geosci. 16(2), 297–322 (2012). doi: 10.1007/s10,596-011-9244-4 CrossRefGoogle Scholar
  25. 25.
    Lloyd, S.: Least squares quantization in pcm. IEEE Trans. Inf. Theory 28(2), 129–137 (1982). doi: 10.1109/TIT.1982.1056,489 CrossRefGoogle Scholar
  26. 26.
    Markovinovic, R., Jansen, J.D.: Accelerating iterative solution methods using reduced-order models as solution predictors. Int. J. Numer. Methods Eng. 68(5), 525–541 (2006). doi: 10.1002/nme.1721 CrossRefGoogle Scholar
  27. 27.
    Park, K., Caers, J.: History matching in low-dimensional connectivity-vector space. In: EAGE Petroleum Geostatistics. Cascais, Portugal. doi: 10.3997/2214-4609.201403075 (2007)
  28. 28.
    Sarma, P., Chen, W., Xie, J.: Selecting representative models from a large set of models. In: SPE Reservoir Simulation Symposium. The Woodlands, Texas. doi: 10.2118/163671-MS (2013)
  29. 29.
    Sarma, P., Durlofsky, L.J., Aziz, K.: Computational techniques for closed–loop reservoir modeling with application to a realistic reservoir. Pet. Sci. Technol. 26(10–11), 1120–1140 (2008). doi: 10.1080/10916460701829,580 CrossRefGoogle Scholar
  30. 30.
    Scheidt, C., Caers, J.: Representing spatial uncertainty using distances and kernels. Math. Geosci. 41(4), 397–419 (2009). doi: 10.1007/s11,004-008-9186-0 CrossRefGoogle Scholar
  31. 31.
    Scheidt, C., Caers, J., Chen, Y., Durlofsky, L.: A multi-resolution workflow to generate high-resolution models constrained to dynamic data. Comput. Geosci. 15(3), 545–563 (2011). doi: 10.1007/s10,596-011-9223-9 CrossRefGoogle Scholar
  32. 32.
    Scheidt, C., Caers, J., et al: Uncertainty quantification in reservoir performance using distances and kernel methods–application to a west africa deepwater turbidite reservoir. SPE J. 14(04), 680–692 (2009). doi: 10.2118/118,740-PA CrossRefGoogle Scholar
  33. 33.
    Shekhawat, H.S., Weiland, S.: On the problem of low rank approximation of tensors. In: 21st International Symposium on Mathematical Theory of Networks and Systems. Groningen, The Netherlands. http://fwn06.housing.rug.nl/mtns2014-papers/fullPapers/0386.pdf (2014)
  34. 34.
    Suzuki, S., Caers, J.: A distance based prior model parameterization for constraining solution of spatial inverse problems. Math. Geosci. 40(4), 445-469 (2008). doi: 10.1007/s11,004-008-9154-8 CrossRefGoogle Scholar
  35. 35.
    Suzuki, S., Caumon, G., Caers, J.: Dynamic data integration for structural modeling: model screening approach using a distance-based model parameterization. Comput. Geosci. 12(1), 105-119 (2008). doi: 10.1007/s10,596-007-9063-9 CrossRefGoogle Scholar
  36. 36.
    Van Doren, J.F.M., Van den Hof, P.M.J., Bosgra, O.H., Jansen, J.D.: Controllability and observability in two-phase porous media flow. Comput. Geosci. 17(5), 773-788 (2013). doi: 10.1007/s10,596-013-9355-1 CrossRefGoogle Scholar
  37. 37.
    Van Essen, G.M., Zandvliet, M.J., Van den Hof, P.M.J., Bosgra, O.H., Jansen, J.D.: Robust waterflooding optimization of multiple geological scenarios. SPE J. 14(01), 202-210 (2009). doi: 10.2118/102,913-ms CrossRefGoogle Scholar
  38. 38.
    Vervliet, N., Debals, O., Sorber, L., Barel, M.V., Lathauwer, L.D.: Tensorlab v3.0. Available online http://www.tensorlab.net (2016)
  39. 39.
    Vo, H.X., Durlofsky, L.J.: Data assimilation and uncertainty assessment for complex geological models using a new pca-based parameterization. Comput. Geosci. 19(4), 747-767 (2015). doi: 10.1007/s10,596-015-9483-x CrossRefGoogle Scholar
  40. 40.
    Weiland, S., Van Belzen, F.: Singular value decompositions and low rank approximation of tensors. IEEE Trans. Signal Process. 58(3), 1171-1182 (2010). doi: 10.1109/tsp.2009.2034,308 CrossRefGoogle Scholar
  41. 41.
    Yeh, T.H., Jimenez, E., Van Essen, G., Chen, C., Jin, L., Girardi, A., Gelderblom, P., Horesh, L., Conn, A.R., et al: Reservoir uncertainty quantification using probabilistic history matching workflow. In: SPE Annual Technical Conference and Exhibition. Amsterdam, The Netherlands. doi: 10.2118/170893-ms (2014)

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Control Systems Group, Department of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Department of Geoscience and EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations