Afra, S., Gildin, E.: Permeability parametrization using higher order singular value decomposition (hosvd). In: 2013 12th International Conference on Machine Learning and Applications (ICMLA), vol. 2, pp. 188–193. IEEE (2013). doi:10.1109/icmla.2013.121
Afra, S., Gildin, E., Tarrahi, M.: Heterogeneous reservoir characterization ussing efficient parameterization through higher order svd (hosvd). In: American Control Conference, pp. 147–152, Portland, Oregon (2014). doi:10.1109/acc.2014.6859,246
Aloise, D., Deshpande, A., Hansen, P., Popat, P.: Np-hardness of euclidean sum-of-squares clustering. Mach. Learn. 75(2), 245–248 (2009). doi:10.1007/s10,994-009-5103-0
Article
Google Scholar
Aziz, K., Settari, A.: Petroleum reservoir simulation, vol. 476 Applied Science Publishers London (1979)
Bader, B.W., Kolda, T.G., et al.: Matlab tensor toolbox version 2.6. Available online http://www.sandia.gov/tgkolda/TensorToolbox/ (2015)
Barros, E.G.D., Van den Hof, P.M.J., Jansen, J.D.: Value of information in closed-loop reservoir management. Comput. Geosci. 20(3), 737–749 (2016). doi:10.1007/s10,596-015-9509-4
Article
Google Scholar
Borg, I., Groenen, P.J.F.: Modern multidimensional scaling: Theory and applications. Springer. doi:10.4324/9780203767719 (2005)
Caers, J., Park, K., Scheidt, C.: Modeling uncertainty of complex earth systems in metric space. In: Handbook of Geomathematics, pp. 865–889. Springer (2010). doi:10.1007/978-3-642-01,546-5-29
Cardoso, M.A., Durlofsky, L.J., Sarma, P.: Development and application of reduced-order modeling procedures for subsurface flow simulation. Int. J. Numer. Methods Eng. 77(9), 1322–1350 (2009). doi:10.1002/nme.2453
Article
Google Scholar
Chen, Y., Oliver, D.S., Zhang, D., et al: Efficient ensemble-based closed-loop production optimization. SPE J. 14(04), 634–645 (2009). doi:10.2118/112,873-pa
Article
Google Scholar
De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000). doi:10.1137/s0895479896305,696
Article
Google Scholar
De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank- (r
1,r
2, ...,r
n
) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21 (4), 1324–1342 (2000). doi:10.1137/s0895479898346,995
Article
Google Scholar
Durlofsky, L.J.: Upscaling and gridding of fine scale geological models for flow simulation. In: 8th International Forum on Reservoir Simulation Iles Borromees, Stresa, Italy, pp. 20–24 (2005). https://pangea.stanford.edu/ERE/research/suprihw/durlofsky/upsc_grid_review_ifrs_2005.pdf
Gildin, E., Afra, S.: Efficient inference of reservoir parameter distribution utilizing higher order svd reparameterization. In: ECMOR XIV-14th European conference on the mathematics of oil recovery. Catania, Italy (2014). doi:10.3997/2214-4609.20141826
Golub, G.H., Van Loan, C.F.: Matrix computations, vol. 3. JHU Press. doi:10.1137/1028073 (2012)
Insuasty, E., Van den Hof, P.M.J., Weiland, S., Jansen, J.D.: Tensor-based reduced order modeling in reservoir engineering: An application to production optimization. IFAC-PapersOnLine 48(6), 254–259 (2015). doi:10.1016/j.ifacol.2015.08.040
Article
Google Scholar
Jansen, J.D.: A systems description of flow through porous media. Springer Briefs in Earth Sciences, Springer. doi:10.1007/978-3-319-00260-6 (2013)
Jansen, J.D., Bosgra, O.H., Van den Hof, P.M.J.: Model-based control of multiphase flow in subsurface oil reservoirs. J. Process Control 18(9), 846–855 (2008). doi:10.1016/j.jprocont.2008.06.011
Article
Google Scholar
Jansen, J.D., Fonseca, R.M., Kahrobaei, S., Siraj, M.M., Van Essen, G.M., Van den Hof, P.M.J.: The egg model–a geological ensemble for reservoir simulation. Geosci. Data J. 1(2), 192–195 (2014). doi:10.1002/gdj3.21
Article
Google Scholar
Jegelka, S., Sra, S., Banerjee, A.: Approximation algorithms for tensor clustering. In: Algorithmic learning theory, pp. 368–383. Springer (2009). doi:10.1007/978-3-642-04,414-4-30
Ketchen, D.J., Shook, C.L.: The application of cluster analysis in strategic management research: an analysis and critique. Strateg. Manag. J. 17(6), 441–458 (1996). doi:10.1002/(SICI)1097-0266(199,606)17:6<441::AID-SMJ819>3.0.CO;2-G
Article
Google Scholar
Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009). doi:10.1137/07070,111x
Article
Google Scholar
Krogstad, S.: A sparse basis pod for model reduction of multiphase compressible flow. In: SPE Reservoir Simulation Symposium. The Woodlands, Texas. doi:10.2118/141973-ms (2011)
Lie, K.A., Krogstad, S., Ligaarden, I.S., Natvig, J.R., Nilsen, H.M., Skaflestad, B.: Open-source matlab implementation of consistent discretisations on complex grids. Comput. Geosci. 16(2), 297–322 (2012). doi:10.1007/s10,596-011-9244-4
Article
Google Scholar
Lloyd, S.: Least squares quantization in pcm. IEEE Trans. Inf. Theory 28(2), 129–137 (1982). doi:10.1109/TIT.1982.1056,489
Article
Google Scholar
Markovinovic, R., Jansen, J.D.: Accelerating iterative solution methods using reduced-order models as solution predictors. Int. J. Numer. Methods Eng. 68(5), 525–541 (2006). doi:10.1002/nme.1721
Article
Google Scholar
Park, K., Caers, J.: History matching in low-dimensional connectivity-vector space. In: EAGE Petroleum Geostatistics. Cascais, Portugal. doi:10.3997/2214-4609.201403075 (2007)
Sarma, P., Chen, W., Xie, J.: Selecting representative models from a large set of models. In: SPE Reservoir Simulation Symposium. The Woodlands, Texas. doi:10.2118/163671-MS (2013)
Sarma, P., Durlofsky, L.J., Aziz, K.: Computational techniques for closed–loop reservoir modeling with application to a realistic reservoir. Pet. Sci. Technol. 26(10–11), 1120–1140 (2008). doi:10.1080/10916460701829,580
Article
Google Scholar
Scheidt, C., Caers, J.: Representing spatial uncertainty using distances and kernels. Math. Geosci. 41(4), 397–419 (2009). doi:10.1007/s11,004-008-9186-0
Article
Google Scholar
Scheidt, C., Caers, J., Chen, Y., Durlofsky, L.: A multi-resolution workflow to generate high-resolution models constrained to dynamic data. Comput. Geosci. 15(3), 545–563 (2011). doi:10.1007/s10,596-011-9223-9
Article
Google Scholar
Scheidt, C., Caers, J., et al: Uncertainty quantification in reservoir performance using distances and kernel methods–application to a west africa deepwater turbidite reservoir. SPE J. 14(04), 680–692 (2009). doi:10.2118/118,740-PA
Article
Google Scholar
Shekhawat, H.S., Weiland, S.: On the problem of low rank approximation of tensors. In: 21st International Symposium on Mathematical Theory of Networks and Systems. Groningen, The Netherlands. http://fwn06.housing.rug.nl/mtns2014-papers/fullPapers/0386.pdf (2014)
Suzuki, S., Caers, J.: A distance based prior model parameterization for constraining solution of spatial inverse problems. Math. Geosci. 40(4), 445-469 (2008). doi:10.1007/s11,004-008-9154-8
Article
Google Scholar
Suzuki, S., Caumon, G., Caers, J.: Dynamic data integration for structural modeling: model screening approach using a distance-based model parameterization. Comput. Geosci. 12(1), 105-119 (2008). doi:10.1007/s10,596-007-9063-9
Article
Google Scholar
Van Doren, J.F.M., Van den Hof, P.M.J., Bosgra, O.H., Jansen, J.D.: Controllability and observability in two-phase porous media flow. Comput. Geosci. 17(5), 773-788 (2013). doi:10.1007/s10,596-013-9355-1
Article
Google Scholar
Van Essen, G.M., Zandvliet, M.J., Van den Hof, P.M.J., Bosgra, O.H., Jansen, J.D.: Robust waterflooding optimization of multiple geological scenarios. SPE J. 14(01), 202-210 (2009). doi:10.2118/102,913-ms
Article
Google Scholar
Vervliet, N., Debals, O., Sorber, L., Barel, M.V., Lathauwer, L.D.: Tensorlab v3.0. Available online http://www.tensorlab.net (2016)
Vo, H.X., Durlofsky, L.J.: Data assimilation and uncertainty assessment for complex geological models using a new pca-based parameterization. Comput. Geosci. 19(4), 747-767 (2015). doi:10.1007/s10,596-015-9483-x
Article
Google Scholar
Weiland, S., Van Belzen, F.: Singular value decompositions and low rank approximation of tensors. IEEE Trans. Signal Process. 58(3), 1171-1182 (2010). doi:10.1109/tsp.2009.2034,308
Article
Google Scholar
Yeh, T.H., Jimenez, E., Van Essen, G., Chen, C., Jin, L., Girardi, A., Gelderblom, P., Horesh, L., Conn, A.R., et al: Reservoir uncertainty quantification using probabilistic history matching workflow. In: SPE Annual Technical Conference and Exhibition. Amsterdam, The Netherlands. doi:10.2118/170893-ms (2014)