Abstract
In reservoir engineering, it is attractive to characterize the difference between reservoir models in metrics that relate to the economic performance of the reservoir as well as to the underlying geological structure. In this paper, we develop a dissimilarity measure that is based on reservoir flow patterns under a particular operational strategy. To this end, a spatial-temporal tensor representation of the reservoir flow patterns is used, while retaining the spatial structure of the flow variables. This allows reduced-order tensor representations of the dominating patterns and simple computation of a flow-induced dissimilarity measure between models. The developed tensor techniques are applied to cluster model realizations in an ensemble, based on similarity of flow characteristics.
Article PDF
References
Afra, S., Gildin, E.: Permeability parametrization using higher order singular value decomposition (hosvd). In: 2013 12th International Conference on Machine Learning and Applications (ICMLA), vol. 2, pp. 188–193. IEEE (2013). doi:10.1109/icmla.2013.121
Afra, S., Gildin, E., Tarrahi, M.: Heterogeneous reservoir characterization ussing efficient parameterization through higher order svd (hosvd). In: American Control Conference, pp. 147–152, Portland, Oregon (2014). doi:10.1109/acc.2014.6859,246
Aloise, D., Deshpande, A., Hansen, P., Popat, P.: Np-hardness of euclidean sum-of-squares clustering. Mach. Learn. 75(2), 245–248 (2009). doi:10.1007/s10,994-009-5103-0
Aziz, K., Settari, A.: Petroleum reservoir simulation, vol. 476 Applied Science Publishers London (1979)
Bader, B.W., Kolda, T.G., et al.: Matlab tensor toolbox version 2.6. Available online http://www.sandia.gov/tgkolda/TensorToolbox/ (2015)
Barros, E.G.D., Van den Hof, P.M.J., Jansen, J.D.: Value of information in closed-loop reservoir management. Comput. Geosci. 20(3), 737–749 (2016). doi:10.1007/s10,596-015-9509-4
Borg, I., Groenen, P.J.F.: Modern multidimensional scaling: Theory and applications. Springer. doi:10.4324/9780203767719 (2005)
Caers, J., Park, K., Scheidt, C.: Modeling uncertainty of complex earth systems in metric space. In: Handbook of Geomathematics, pp. 865–889. Springer (2010). doi:10.1007/978-3-642-01,546-5-29
Cardoso, M.A., Durlofsky, L.J., Sarma, P.: Development and application of reduced-order modeling procedures for subsurface flow simulation. Int. J. Numer. Methods Eng. 77(9), 1322–1350 (2009). doi:10.1002/nme.2453
Chen, Y., Oliver, D.S., Zhang, D., et al: Efficient ensemble-based closed-loop production optimization. SPE J. 14(04), 634–645 (2009). doi:10.2118/112,873-pa
De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000). doi:10.1137/s0895479896305,696
De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank- (r 1,r 2, ...,r n ) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21 (4), 1324–1342 (2000). doi:10.1137/s0895479898346,995
Durlofsky, L.J.: Upscaling and gridding of fine scale geological models for flow simulation. In: 8th International Forum on Reservoir Simulation Iles Borromees, Stresa, Italy, pp. 20–24 (2005). https://pangea.stanford.edu/ERE/research/suprihw/durlofsky/upsc_grid_review_ifrs_2005.pdf
Gildin, E., Afra, S.: Efficient inference of reservoir parameter distribution utilizing higher order svd reparameterization. In: ECMOR XIV-14th European conference on the mathematics of oil recovery. Catania, Italy (2014). doi:10.3997/2214-4609.20141826
Golub, G.H., Van Loan, C.F.: Matrix computations, vol. 3. JHU Press. doi:10.1137/1028073 (2012)
Insuasty, E., Van den Hof, P.M.J., Weiland, S., Jansen, J.D.: Tensor-based reduced order modeling in reservoir engineering: An application to production optimization. IFAC-PapersOnLine 48(6), 254–259 (2015). doi:10.1016/j.ifacol.2015.08.040
Jansen, J.D.: A systems description of flow through porous media. Springer Briefs in Earth Sciences, Springer. doi:10.1007/978-3-319-00260-6 (2013)
Jansen, J.D., Bosgra, O.H., Van den Hof, P.M.J.: Model-based control of multiphase flow in subsurface oil reservoirs. J. Process Control 18(9), 846–855 (2008). doi:10.1016/j.jprocont.2008.06.011
Jansen, J.D., Fonseca, R.M., Kahrobaei, S., Siraj, M.M., Van Essen, G.M., Van den Hof, P.M.J.: The egg model–a geological ensemble for reservoir simulation. Geosci. Data J. 1(2), 192–195 (2014). doi:10.1002/gdj3.21
Jegelka, S., Sra, S., Banerjee, A.: Approximation algorithms for tensor clustering. In: Algorithmic learning theory, pp. 368–383. Springer (2009). doi:10.1007/978-3-642-04,414-4-30
Ketchen, D.J., Shook, C.L.: The application of cluster analysis in strategic management research: an analysis and critique. Strateg. Manag. J. 17(6), 441–458 (1996). doi:10.1002/(SICI)1097-0266(199,606)17:6<441::AID-SMJ819>3.0.CO;2-G
Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009). doi:10.1137/07070,111x
Krogstad, S.: A sparse basis pod for model reduction of multiphase compressible flow. In: SPE Reservoir Simulation Symposium. The Woodlands, Texas. doi:10.2118/141973-ms (2011)
Lie, K.A., Krogstad, S., Ligaarden, I.S., Natvig, J.R., Nilsen, H.M., Skaflestad, B.: Open-source matlab implementation of consistent discretisations on complex grids. Comput. Geosci. 16(2), 297–322 (2012). doi:10.1007/s10,596-011-9244-4
Lloyd, S.: Least squares quantization in pcm. IEEE Trans. Inf. Theory 28(2), 129–137 (1982). doi:10.1109/TIT.1982.1056,489
Markovinovic, R., Jansen, J.D.: Accelerating iterative solution methods using reduced-order models as solution predictors. Int. J. Numer. Methods Eng. 68(5), 525–541 (2006). doi:10.1002/nme.1721
Park, K., Caers, J.: History matching in low-dimensional connectivity-vector space. In: EAGE Petroleum Geostatistics. Cascais, Portugal. doi:10.3997/2214-4609.201403075 (2007)
Sarma, P., Chen, W., Xie, J.: Selecting representative models from a large set of models. In: SPE Reservoir Simulation Symposium. The Woodlands, Texas. doi:10.2118/163671-MS (2013)
Sarma, P., Durlofsky, L.J., Aziz, K.: Computational techniques for closed–loop reservoir modeling with application to a realistic reservoir. Pet. Sci. Technol. 26(10–11), 1120–1140 (2008). doi:10.1080/10916460701829,580
Scheidt, C., Caers, J.: Representing spatial uncertainty using distances and kernels. Math. Geosci. 41(4), 397–419 (2009). doi:10.1007/s11,004-008-9186-0
Scheidt, C., Caers, J., Chen, Y., Durlofsky, L.: A multi-resolution workflow to generate high-resolution models constrained to dynamic data. Comput. Geosci. 15(3), 545–563 (2011). doi:10.1007/s10,596-011-9223-9
Scheidt, C., Caers, J., et al: Uncertainty quantification in reservoir performance using distances and kernel methods–application to a west africa deepwater turbidite reservoir. SPE J. 14(04), 680–692 (2009). doi:10.2118/118,740-PA
Shekhawat, H.S., Weiland, S.: On the problem of low rank approximation of tensors. In: 21st International Symposium on Mathematical Theory of Networks and Systems. Groningen, The Netherlands. http://fwn06.housing.rug.nl/mtns2014-papers/fullPapers/0386.pdf (2014)
Suzuki, S., Caers, J.: A distance based prior model parameterization for constraining solution of spatial inverse problems. Math. Geosci. 40(4), 445-469 (2008). doi:10.1007/s11,004-008-9154-8
Suzuki, S., Caumon, G., Caers, J.: Dynamic data integration for structural modeling: model screening approach using a distance-based model parameterization. Comput. Geosci. 12(1), 105-119 (2008). doi:10.1007/s10,596-007-9063-9
Van Doren, J.F.M., Van den Hof, P.M.J., Bosgra, O.H., Jansen, J.D.: Controllability and observability in two-phase porous media flow. Comput. Geosci. 17(5), 773-788 (2013). doi:10.1007/s10,596-013-9355-1
Van Essen, G.M., Zandvliet, M.J., Van den Hof, P.M.J., Bosgra, O.H., Jansen, J.D.: Robust waterflooding optimization of multiple geological scenarios. SPE J. 14(01), 202-210 (2009). doi:10.2118/102,913-ms
Vervliet, N., Debals, O., Sorber, L., Barel, M.V., Lathauwer, L.D.: Tensorlab v3.0. Available online http://www.tensorlab.net (2016)
Vo, H.X., Durlofsky, L.J.: Data assimilation and uncertainty assessment for complex geological models using a new pca-based parameterization. Comput. Geosci. 19(4), 747-767 (2015). doi:10.1007/s10,596-015-9483-x
Weiland, S., Van Belzen, F.: Singular value decompositions and low rank approximation of tensors. IEEE Trans. Signal Process. 58(3), 1171-1182 (2010). doi:10.1109/tsp.2009.2034,308
Yeh, T.H., Jimenez, E., Van Essen, G., Chen, C., Jin, L., Girardi, A., Gelderblom, P., Horesh, L., Conn, A.R., et al: Reservoir uncertainty quantification using probabilistic history matching workflow. In: SPE Annual Technical Conference and Exhibition. Amsterdam, The Netherlands. doi:10.2118/170893-ms (2014)
Acknowledgements
We acknowledge the discussions with Dr.Tzu-hao Yeh from the Quantitative Reservoir Management group at Shell for his views on the potential application of the techniques presented in this paper on field cases. The authors acknowledge financial support from the Recovery Factory program sponsored by Shell Global Solutions International.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Insuasty, E., Van den Hof, P.M.J., Weiland, S. et al. Flow-based dissimilarity measures for reservoir models: a spatial-temporal tensor approach. Comput Geosci 21, 645–663 (2017). https://doi.org/10.1007/s10596-017-9641-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10596-017-9641-4