Skip to main content

Analysis of a more realistic well representation during secondary recovery in 3-D continuum models

Abstract

The effectiveness of secondary recovery methods in reservoir development studies depends on the knowledge about how fluid-carrying regions (i.e. good-quality rock types) are connected between injection and production wells. To estimate reservoir performance uncertainty, comprehensive simulations on many reservoir model realisations are necessary, which is very CPU consuming and time demanding. Alternatively, we can use much simpler and physically based methods such as percolation approach. Classic percolation assumes connectivity between opposite 2-D faces of a 3-D system; whereas, hydrocarbon production is achieved through active wells that are one-dimensional lines (e.g. vertical, horizontal or deviated wells). The main contribution of this study is to analyse the percolation properties of 3-D continuum percolation models with more realistic well representations during secondary recovery. In particular, the connection of randomly distributed sands (i.e. good-quality rock types) between two lines (representing two wells) located at two corners of the system are modelled by Monte Carlo simulations. Subsequently, the connectivity and conductivity of such a line-to-line well representation is compared with that of face-to-face well representations in the previously published results. The critical percolation properties of those systems as well as the universality concept are also investigated. As there are many rooms for connections in 3-D models, we found that the principal percolation properties will not be altered significantly when the problem with a face-to-face connection is transformed to a line-to-line connection model.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Sadeghnejad, S., Masihi, M.: Water flooding performance evaluation using percolation theory. J. Pet. Sci. Tech. 1, 19–23 (2011)

    Google Scholar 

  2. 2.

    Berkowitz, B., Balberg, I.: Percolation theory and its application to groundwater hydrology. Water. Resour. Res. 29, 775–794 (1993)

    Article  Google Scholar 

  3. 3.

    Sahimi, M.: Applications of Percolation Theory. Taylor & Francis (1994)

  4. 4.

    Bour, O., Davy, P.: On the connectivity of three-dimensional fault networks. Water. Resour. Res. 34, 2611–2622 (1998)

    Article  Google Scholar 

  5. 5.

    Sadeghnejad, S., Masihi, M., Shojaei, A., Pishvaie, M., King, P. R.: Field scale characterization of geological formations using percolation theory. Transp. Porous Med. 92, 357–372 (2012)

    Article  Google Scholar 

  6. 6.

    Nurafza, P. R., King, P. R., Masihi, M.: Facies connectivity modelling: analysis and field study SPE Europec/EAGE Annual Conference and Exhibition. Society of Petroleum Engineers (2006)

    Google Scholar 

  7. 7.

    Stauffer, D., Aharony, A.: Introduction to Percolation Theory. CRC Press (1994)

  8. 8.

    Renard, P., Allard, D.: Connectivity metrics for subsurface flow and transport. Adv. Water. Resour. 51, 168–196 (2013)

    Article  Google Scholar 

  9. 9.

    Berkowitz, B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water. Resour. 25, 861–884 (2002)

    Article  Google Scholar 

  10. 10.

    King, P. R.: The connectivity and conductivity of overlapping sand bodies. In: Buller, A. T. et al. (eds.) North Sea Oil and Gas Reservoirs—II, pp 353–362. Springer, Netherlands (1990)

    Chapter  Google Scholar 

  11. 11.

    Ozkaya, S. I., Mattner, J.: Fracture connectivity from fracture intersections in borehole image logs. Comput. Geosci. 29, 143–153 (2003)

    Article  Google Scholar 

  12. 12.

    Mourzenko, V. V., Thovert, J. F., Adler, P. M.: Percolation of three-dimensional fracture networks with power-law size distribution. Phys. Rev. E. 72, 036103 (2005)

    Article  Google Scholar 

  13. 13.

    Belayneh, M., Masihi, M., Matthäi, S. K., King, P. R.: Prediction of vein connectivity using the percolation approach: model test with field data. J. Geophys. Eng. 3, 219 (2006)

    Article  Google Scholar 

  14. 14.

    Tóth, T. M., Vass, I.: Relationship between the geometric parameters of rock fractures, the size of percolation clusters and REV. Math. Geosci. 43, 75–97 (2011)

    Article  Google Scholar 

  15. 15.

    Sadeghnejad, S., Masihi, M., King, P. R.: Dependency of percolation critical exponents on the exponent of power law size distribution. Phys. A 392, 6189–6197 (2013)

    Article  Google Scholar 

  16. 16.

    Dokholyan, N., Lee, Y., Buldyrev, S., Havlin, S., King, P., Stanley, H. E.: Scaling of the distribution of shortest paths in percolation. J. Stat. Phys. 93, 603–613 (1998)

    Article  Google Scholar 

  17. 17.

    Dokholyan, N. V., Buldyrev, S. V., Havlin, S., King, P. R., Lee, Y., Stanley, H. E.: Distribution of shortest paths in percolation. Phys. A 266, 55–61 (1999)

    Article  Google Scholar 

  18. 18.

    Andrade, J. S., Buldyrev, S. V., Dokholyan, N. V., Havlin, S., King, P. R., Lee, Y., Paul, G., Eugene Stanley, H.: Flow between two sites on a percolation cluster. Phys. Rev. E. 62, 8270–8281 (2000)

    Article  Google Scholar 

  19. 19.

    Andrade, J. Jr, Araujo, A., Buldyrev, S., Havlin, S., Stanley, H.: Dynamics of viscous penetration in percolation porous media. Phys. Rev. E. 63, 051403 (2001)

    Article  Google Scholar 

  20. 20.

    Lee, Y., Andrade, J. S., Buldyrev, S. V., Dokholyan, N. V., Havlin, S., King, P. R., Paul, G., Stanley, H. E.: Traveling time and traveling length in critical percolation clusters. Phys. Rev. E. 60, 3425–3428 (1999)

    Article  Google Scholar 

  21. 21.

    López, E., Buldyrev, S. V., Braunstein, L. A., Havlin, S., Stanley, H. E.: Possible connection between the optimal path and flow in percolation clusters. Phys. Rev. E. 72, 056131 (2005)

    Article  Google Scholar 

  22. 22.

    Paul, G., Havlin, S., Stanley, H. E.: Fractal behavior of the shortest path between two lines in percolation systems. Phys. Rev. E. 65, 066105 (2002)

    Article  Google Scholar 

  23. 23.

    da Silva, L. R., Paul, G., Havlin, S., Baker, D. R., Stanley, H. E.: Scaling of cluster mass between two lines in 3d percolation. Phys. A 318, 307–318 (2003)

    Article  Google Scholar 

  24. 24.

    Araújo, A. D., Moreira, A. A., Makse, H. A., Stanley, H. E., Andrade, J. S.: Traveling length and minimal traveling time for flow through percolation networks with long-range spatial correlations. Phys. Rev. E. 66, 046304 (2002)

    Article  Google Scholar 

  25. 25.

    Soares, R. F., Corso, G., Lucena, L. S., Freitas, J. E., da Silva, L. R., Paul, G., Stanley, H. E.: Distribution of shortest paths at percolation threshold: application to oil recovery with multiple wells. Phys. A 343, 739–747 (2004)

    Article  Google Scholar 

  26. 26.

    King, P. r., Buldyrev, S. v., Dokholyan, N. v., Havlin, S., Lee, Y., Paul, G., Stanley, H. e.: Applications of statistical physics to the oil industry: predicting oil recovery using percolation theory. Phys. A 274, 60–66 (1999)

    Article  Google Scholar 

  27. 27.

    King, P. R., Buldyrev, S. V., Dokholyan, N. V., Havlin, S., Lee, Y., Paul, G., Stanley, H. E., Vandesteeg, N.: Predicting oil recovery using percolation theory. Petrol. Geosci. 7, S105–S107 (2001)

    Article  Google Scholar 

  28. 28.

    King, P. R., Buldyrev, S. V., Dokholyan, N. V., Havlin, S., Lopez, E., Paul, G., Stanley, H. E.: Uncertainty in oil production predicted by percolation theory. Phys. A 306, 376–380 (2002)

    Article  Google Scholar 

  29. 29.

    King, P. R., Buldyrev, S. V., Dokholyan, N. V., Havlin, S., Lopez, E., Paul, G., Stanley, H. E.: Using percolation theory to predict oil field performance. Phys. A 314, 103–108 (2002)

    Article  Google Scholar 

  30. 30.

    Tavagh-Mohammadi, B., Masihi, M., Ganjeh-Ghazvini, M.: Point-to-point connectivity prediction in porous media using percolation theory. Phys. A 460, 304–313 (2016)

    Article  Google Scholar 

  31. 31.

    Sadeghnejad, S., Masihi, M.: Point to point continuum percolation in two dimensions. J. Stat. Mech. 2016, 103210 (2016)

    Article  Google Scholar 

  32. 32.

    Sadeghnejad, S., Masihi, M., King, P.: Study the connectivity of good sands between two wells represented by two points using percolation theory 78th EAGE Conference and Exhibition, Vienna (2016)

    Google Scholar 

  33. 33.

    Sadeghnejad, S., Masihi, M., King, P., Gago, P.: Study the effect of connectivity between two wells on secondary recovery efficiency using percolation approach ECMOR XV—15th European Conference on the Mathematics of Oil Recovery (2016)

    Google Scholar 

  34. 34.

    Koltermann, C. E., Gorelick, S. M.: Heterogeneity in sedimentary deposits: a review of structure-imitating, process-imitating, and descriptive approaches. Water. Resour. Res. 32, 2617–2658 (1996)

    Article  Google Scholar 

  35. 35.

    Ronayne, M. J., Gorelick, S. M.: Effective permeability of porous media containing branching channel networks. Phys. Rev. E. 73, 026305 (2006)

    Article  Google Scholar 

  36. 36.

    Watson, A., Gavalas, G., Seinfeld, J.: Identifiability of estimates of two-phase reservoir properties in history matching. Soc. Pet. Eng. J. 24, 697–706 (1984)

    Article  Google Scholar 

  37. 37.

    Grader, A. S., Horne, R. N.: Interference testing: detecting a circular impermeable or compressible subregion. SPE Form. Eval. 3, 420–428 (1988)

    Article  Google Scholar 

  38. 38.

    Kahrobae, S., Habibabadi, M. M., Joosten, G. J., Van den Hof, P. M., Jansen, J. -D.: Identifiability of location and magnitude of flow barriers in slightly compressible flow. SPE J. 21(3), 899–908 (2016)

  39. 39.

    Levitan, M., Crawford, G.: General heterogeneous radial and linear models for well-test analysis. SPE J. 7, 131–138 (2002)

    Article  Google Scholar 

  40. 40.

    Prakash, S., Havlin, S., Schwartz, M., Stanley, H. E.: Structural and dynamical properties of long-range correlated percolation. Phys. Rev. A. 46, R1724–R1727 (1992)

    Article  Google Scholar 

  41. 41.

    Sahimi, M., Mukhopadhyay, S.: Scaling properties of a percolation model with long-range correlations. Phys. Rev. E. 54, 3870–3880 (1996)

    Article  Google Scholar 

  42. 42.

    Masihi, M., King, P. R.: A correlated fracture network: modeling and percolation properties. Water. Resour. Res. 43 (2007)

  43. 43.

    Baker, D. R., Paul, G., Sreenivasan, S., Stanley, H. E.: Continuum percolation threshold for interpenetrating squares and cubes. Phys. Rev. E. 66, 046136 (2002)

    Article  Google Scholar 

  44. 44.

    Garboczi, E. J., Thorpe, M. F., DeVries, M. S., Day, A. R.: Universal conductivity curve for a plane containing random holes. Phys. Rev. A. 43, 6473–6482 (1991)

    Article  Google Scholar 

  45. 45.

    Alon, U., Drory, A., Balberg, I.: Systematic derivation of percolation thresholds in continuum systems. Phys. Rev. A. 42, 4634 (1990)

    Article  Google Scholar 

  46. 46.

    Dubson, M. A., Garland, J. C.: Measurement of the conductivity exponent in two-dimensional percolating networks: square lattice versus random-void continuum. Phys. Rev. B. 32, 7621–7623 (1985)

    Article  Google Scholar 

  47. 47.

    Sadeghnejad, S., Masihi, M., Pishvaie, M., Shojaei, A., King, P.: Utilization of percolation approach to evaluate reservoir connectivity and effective permeability: a case study on North Pars gas field. Scientica. Iranica. 18, 1391–1396 (2011)

    Article  Google Scholar 

  48. 48.

    Quintanilla, J., Torquato, S., Ziff, R.: Efficient measurement of the percolation threshold for fully penetrable discs. J. Phys. A. 33, L399 (2000)

    Article  Google Scholar 

  49. 49.

    Geiger, A., Stanley, H. E.: Tests of universality of percolation exponents for a three-dimensional continuum system of interacting waterlike particles. Phys. Rev. Let. 49, 1895 (1982)

    Article  Google Scholar 

  50. 50.

    Lorenz, C. D., Ziff, R. M.: Precise determination of the critical percolation threshold for the three-dimensional “Swiss cheese” model using a growth algorithm. T. J. Chem. Phys. 114, 3659–3661 (2001)

    Article  Google Scholar 

  51. 51.

    Sadeghnejad, S., Masihi, M., Pishvaie, M., King, P. R.: Rock type connectivity estimation using percolation theory. Math. Geosci. 45, 321–340 (2013)

    Article  Google Scholar 

  52. 52.

    Celzard, A., Marêché, J. F.: Non-universal conductivity critical exponents in anisotropic percolating media: a new interpretation. Phys. A 317, 305–312 (2003)

    Article  Google Scholar 

  53. 53.

    Vogel, E. E., Lebrecht, W., Valdés, J. F.: Bond percolation for homogeneous two-dimensional lattices. Phys. A 389, 1512–1520 (2010)

    Article  Google Scholar 

  54. 54.

    Grassberger, P.: Pair connectedness and shortest-path scaling in critical percolation. J. Phys. A 32, 6233 (1999)

    Article  Google Scholar 

  55. 55.

    Duquerroix, J., Lemouzy, P., Noetinger, B., Romeu, R.: Influence of the permeability anisotropy ratio on large-scale properties of heterogeneous reservoirs SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1993)

    Google Scholar 

  56. 56.

    Bennett, S., McRobb, S., Farmer, R.: Object-Oriented Systems Analysis and Design Using UML. McGraw Hill Higher Education (2005)

  57. 57.

    Romeu, R., Noetinger, B.: Calculation of internodal transmissivities in finite difference models of flow in heterogeneous porous media. Water. Resour. Res. 31, 943–959 (1995)

    Article  Google Scholar 

  58. 58.

    Gautier, Y., Noetinger, B.: Preferential flow-paths detection for heterogeneous reservoirs using a new renormalization technique. Transp Porous Med. 26, 1–23 (1997)

    Article  Google Scholar 

  59. 59.

    Green, C. P., Paterson, L.: Analytical three-dimensional renormalization for calculating effective permeabilities. Transp Porous Med. 68, 237–248 (2007)

    Article  Google Scholar 

  60. 60.

    Karim, M. R., Krabbenhoft, K.: New renormalization schemes for conductivity upscaling in heterogeneous media. Transp Porous Med. 85, 677–690 (2010)

    Article  Google Scholar 

  61. 61.

    Noetinger, B.: About the determination of quasi steady state storativity and connectivity matrix of wells in 3D heterogeneous formations. Math. Geosci., 1–22 (2015)

  62. 62.

    Nøetinger, B.: An explicit formula for computing the sensitivity of the effective conductivity of heterogeneous composite materials to local inclusion transport properties and geometry. Multiscale Model. Simul. 11, 907–924 (2013)

    Article  Google Scholar 

  63. 63.

    King, P. R.: The use of renormalization for calculating effective permeability. Transp Porous Med. 4, 37–58 (1989)

    Article  Google Scholar 

  64. 64.

    Reynolds, P. J., Stanley, H. E., Klein, W.: Large-cell Monte Carlo renormalization group for percolation. Phys. Rev. B. 21, 1223–1245 (1980)

    Article  Google Scholar 

  65. 65.

    Levinshtein, M., Shklovskii, B., Shur, M., Efros, A.: The relation between the critical exponents of percolation theory. Soviet Journal of Experimental and Theoretical Physics 42, 197 (1976)

    Google Scholar 

  66. 66.

    Adler, P. M., Thovert, J. -F.: Fractures and Fracture Networks, vol. 15 Springer Science & Business Media (1999)

  67. 67.

    Berkowitz, B.: Analysis of fracture network connectivity using percolation theory. Math Geol. 27, 467–483 (1995)

    Article  Google Scholar 

  68. 68.

    Harter, T.: Finite-size scaling analysis of percolation in three-dimensional correlated binary Markov chain random fields. Phys. Rev. E. 72, 026120 (2005)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Sadeghnejad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sadeghnejad, S., Masihi, M. Analysis of a more realistic well representation during secondary recovery in 3-D continuum models. Comput Geosci 21, 1035–1048 (2017). https://doi.org/10.1007/s10596-017-9640-5

Download citation

Keywords

  • 3-D continuum percolation
  • Secondary recovery
  • Monte Carlo simulation
  • Line-to-line connection
  • Face-to-face connection
  • Critical exponents
  • Universality concept