Skip to main content

Advertisement

Log in

On obtaining optimal well rates and placement for CO2 storage

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Large-scale storage of CO2 in saline aquifers is considered an essential technology to mitigate CO2 emissions. Storage potential has mainly been estimated based on volumetrics or detailed simulations for specific injection scenarios. In practice, achievable storage capacity will depend on engineering, economical, and political restrictions and be limited by the length of the injection period, costs associated with potential CO2 leakage, pressure management, etc. We show how achievable storage volumes can be estimated and maximized using adjoint-based optimization and a hierarchy of simulation methods. In particular, vertical equilibrium models provide the simplest possible description of the flow dynamics during the injection and early post-injection period, while percolation type methods provide effective means for forecasting the long-term fate of CO2 during the later migration stages. We investigate the storage volumes that can be achieved for several formations found along the Norwegian Continental Shelf by optimizing well placement and injection rates, and using production wells for pressure management when necessary. Optimal strategies are obtained under various objectives and simple but realistic constraints, namely: penalization of CO2 leakage, minimization of well cost, and restriction of pressure buildup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen, O., Nilsen, H.M., Lie, K.A.: Reexamining CO2 storage capacity and utilization of the Utsira Formation ECMOR XIV – 14th European Conference on the Mathematics of Oil Recovery, Catania, Sicily, Italy, 8-11 September. EAGE. doi:10.3997/2214-4609.20141809 (2014)

  2. Bachu, S.: Review of CO2 storage efficiency in deep saline aquifers. Int. J. Greenh. Gas Con. 1–15 (2015). doi:10.1016/j.ijggc.2015.01.007

  3. Bachu, S., Melnik, A., Bistran, R.: Approach to evaluating the CO2 storage capacity in Devonian deep saline aquifers for emissions from oil sands operations in the Athabasca area, Canada. Energy Procedia 63, 5093–5102 (2014). doi:10.1016/j.egypro.2014.11.539

    Article  Google Scholar 

  4. Bellout, M.C., Echeverría Ciaurri, D., Durlofsky, L.J., Foss, B., Kleppe, J.: Joint optimization of oil well placement and controls. Comput. Geosci. 16(4), 1061–1079 (2012). doi:10.1007/s10596-012-9303-5

    Article  Google Scholar 

  5. Bentham, M., Mallows, T., Lowndes, J., Green, A.: CO2 STORage Evaluation Database (CO2 Stored). the UK’s online storage atlas. Energy Procedia 63(0), 5103–5113 (2014). doi:10.1016/j.egypro.2014.11.540

    Article  Google Scholar 

  6. Birkholzer, J.T., Oldenburg, C.M., Zhou, Q.: CO2 migration and pressure evolution in deep saline aquifers. Int. J. Greenh. Gas Con. 40, 203–220 (2015). doi:10.1016/j.ijggc.2015.03.022

  7. Bøe, R., Magnus, C., Osmundsen, P.T., Rindstad, B.I.: CO2 point sources and subsurface storage capacities for CO2 in aquifers in Norway. Tech. rep. Geological Survey of Norway, Trondheim (2002)

    Google Scholar 

  8. Bradshaw, B.E., Spencer, L.K., Lahtinen, A.L., Khider, K., Ryan, D.J., Colwell, J.B., Chirinos, A., Bradshaw, J., Draper , J.J., Hodgkinson, J., McKillop, M.: An assessment of Queensland’s CO2 geological storage prospectivity–The Queensland CO2 geological storage atlas. Energy Procedia 4(0), 4583–4590 (2011). doi:10.1016/j.egypro.2011.02.417

    Article  Google Scholar 

  9. Bradshaw, J., Bachu, S., Bonijoly, D., Burruss, R., Holloway, S., Christensen, N.P., Mathiassen, O.M.: CO2 storage capacity estimation: Issues and development of standards. Int. J. Greenh. Gas Con. 1(1), 62–68 (2007). doi:10.1016/S1750-5836(07)00027-8

    Article  Google Scholar 

  10. Bruvoll, A., Larsen, B.M.: Greenhouse gas emissions in Norway: Do carbon taxes work? Statistics Norway Discussion Papers 337. Statistics Norway, Kongsvinger (2002). http://www.ssb.no

    Google Scholar 

  11. Cavanagh, A.J., Haszeldine, R.S., Nazarian, B.: The Sleipner CO2 storage site: using a basin model to understand reservoir simulations of plume dynamics. First Break 33(June), 61–68 (2015)

  12. Chen, C., Li, G., Reynolds, A.: Robust constrained optimization of short- and long-term net present value for closedloop reservoir management. SPE J. 17(3), 849–864 (2012). doi:10.2118/141314-pa

  13. Class, H., Ebigbo, A., Helmig, R., Dahle, H.K., Nordbotten, J.M., Celia, M.A., Audigane, P., Darcis, M., Ennis-King, J., Fan, Y., Flemisch, B., Gasda, S.E., Jin, M., Krug, S., Labregere, D., Naderi Beni, A., Pawar, R.J., Sbai, A., Thomas, S.G., Trenty, L., Wei, L.: A benchmark study on problems related to CO2 storage in geologic formations. Comput. Geosci. 13(4), 409–434 (2009). doi:10.1007/s10596-009-9146-x

    Article  Google Scholar 

  14. Class, H., Kissinger, A., Knopf, S., Konrad,W., Noack, V., Scheer, D.: Combined Natural and Social Science Approach for Regional-Scale Characterisation of CO2 Storage Formations and Brine Migration Risks (CO2BRIM), 209–227. Springer International Publishing, Cham (2015). doi:10.1007/978-3-319-13930-2_10

  15. Cloete, M.: Atlas on geological storage of carbon dioxide in South Africa. Tech. rep., Council for Geoscience, Johannesburg, South Africa (2010). sacccs.org.za/wp-content/uploads/2010/11/Atlas.pdf

  16. Craig, J., Gorecki, C.D., Ayash, S.C., Liu, G., Braunberger, J.R.: A comparison of volumetric and dynamic storage efficiency in deep saline reservoirs: An overview of IEAGHG study IEA/CON/13/208. Energy Procedia 63, 5185–5191 (2014). doi:10.1016/j.egypro.2014.11.549

    Article  Google Scholar 

  17. Eigestad, G.T., Dahle, H.K., Hellevang, B., Riis, F., Johansen, W.T., Øian, E.: Geological modeling and simulation of CO2 injection in the Johansen formation. Comput. Geosci. 13(4), 435–450 (2009). doi:10.1007/s10596-009-9153-y

    Article  Google Scholar 

  18. Elenius, M.T., Nordbotten, J.M., Kalisch, H.: Convective mixing influenced by the capillary transition zone. Comput. Geosci. 18(3), 417–431 (2014). doi:10.1007/s10596-014-9415-1

    Article  Google Scholar 

  19. Estublier, A., Lackner, A.S.: Long-term simulation of the Snøhvit CO2 storage. Energy Procedia 1(1), 3221–3228 (2009). doi:10.1016/j.egypro.2009.02.106

    Article  Google Scholar 

  20. Gasda, S.E., Nordbotten, J.M., Celia, M.A.: Application of simplified models to CO2 migration and immobilization in large-scale geological systems. Int. J. Greenh. Gas Con. 9, 72–84 (2012). doi:10.1016/j.ijggc.2012.03.001

    Article  Google Scholar 

  21. Ghomian, Y., Urun, M.B., Pope, G.A., Sepehrnoori, K.: Investigation of economic incentives for CO2 sequestration SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. doi:10.2118/116717-MS (2008)

  22. Grøver, A., Rinna, J., Lothe, A.E., Bergmo, P., Wessel-Berg, D.: How and when could basin modelling approaches be useful for CO2 storage assessment 7th Trondheim CCS Conference, 4th-5th of June (2013)

  23. Halland, E.K., Mujezinović, J., Riis, F. (eds.): CO2 Storage Atlas: Norwegian Continental Shelf. Norwegian Petroleum Directorate, (2014) [http://www.npd.no/en/ Publications/Reports/Compiled-CO2-atlas/]

  24. Hou, J., Zhou, K., Zhang, X.S., Kang, X.D., Xie, H.: A review of closed-loop reservoir management. Pet. Sci. 12(1), 114–128 (2015). doi:10.1007/s12182-014-0005-6

  25. International Energy Agency: Key World Energy Statistics 2015 (2015). tinyurl.com/zkp2af3 (2017)

  26. Jahangiri, H.R., Zhang, D.: Ensemble based co-optimization of carbon dioxide sequestration and enhanced oil recovery. Int. J. Greenh. Gas Con. 8, 22–33 (2012). doi:10.1016/j.ijggc.2012.01.013

    Article  Google Scholar 

  27. Jansen, J.D.: Adjoint-based optimization of multi-phase flow through porous media – a review. Comput. Fluids 46(1), 40–51 (2011). 10th {ICFD} Conference Series on Numerical Methods for Fluid Dynamics (ICFD 2010) doi:10.1016/j.compfluid.2010.09.039

  28. Krogstad, S., Lie, K.A., Møyner, O., Nilsen, H.M., Raynaud, X., Skaflestad, B.: MRST-AD – an open-source framework for rapid prototyping and evaluation of reservoir simulation problems. In: SPE Reservoir Simulation Symposium, 23–25 February, Houston, Texas (2017). doi:10.2118/173317-MS

  29. Lewis, D., Bentham, M., Cleary, T., Vernon, R., O’Neill, N., Kirk, K., Chadwick, A., Hilditch, D., Michael, K., Allinson, G., Neal, P., Ho, M.: Assessment of the potential for geological storage of carbon dioxide for the island of Ireland. Tech. rep., Sustainable Energy Ireland, Environmental Protection Agency, Geological Survey of Northern Ireland, and Geological Survey of Ireland (2008)

  30. Lie, K.A., Krogstad, S., Ligaarden, I.S., Natvig, J.R., Nilsen, H.M., Skaflestad, B.: Open source MATLAB implementation of consistent discretisations on complex grids. Comput. Geosci. 16(2), 297–322 (2012). doi:10.1007/s10596-011-9244-4

    Article  Google Scholar 

  31. Lie, K.A., Nilsen, H.M., Andersen, O., Møyner, O.: A simulation workflow for large-scale CO2 storage in the Norwegian North Sea. Comput. Geosci. 20(3), 607–622 (2016). doi:10.1007/s10596-015-9487-6

    Article  Google Scholar 

  32. Lothe, A.E., Emmel, B., Grøver, A., Bergmo, P.E.: CO2 storage modelling and capacity estimation for the Trøndelag platform, offshore Norway - using a basin modelling approach. Energy Procedia 63(1876), 3648–3657 (2014). doi:10.1016/j.egypro.2014.11.394

    Article  Google Scholar 

  33. MRST: The MATLAB Reservoir Simulation Toolbox (2016). www.sintef.no/MRST

  34. MRST-co2lab: Numerical CO2 laboratory (2016). www.sintef.no/co2lab (2016a)

  35. Natural Resources Canada, Mexican Ministry of Energy, and U.S. Department of Energy: The North American Carbon Storage Atlas (2012). www.nacsap.org/

  36. Nilsen, H.M., Lie, K.A., Andersen, O.: Analysis of CO2 trapping capacities and long-term migration for geological formations in the Norwegian North Sea using MRST-co2lab. Comput. Geosci. 79, 15–26 (2015). doi:10.1016/j.cageo.2015.03.001

  37. Nilsen, H.M., Lie, K.A., Andersen, O.: Fully-implicit simulation of vertical-equilibrium models with hysteresis and capillary fringe. Comput. Geosci. 20(1), 49–67 (2016). doi:10.1007/s10596-015-9547-y

    Article  Google Scholar 

  38. Nilsen, H.M., Lie, K.A., Andersen, O.: Robust simulation of sharp-interface models for fast estimation of CO2 trapping capacity. Comput. Geosci. 20(1), 93–113 (2016). doi:10.1007/s10596-015-9549-9

    Article  Google Scholar 

  39. Nilsen, H.M., Lie, K.A., Møyner, O., Andersen, O.: Spillpoint analysis and structural trapping capacity in saline aquifers using MRST-co2lab. Comput. Geosci. 75, 33–43 (2015). doi:10.1016/j.cageo.2014.11.002

  40. Nilsen, H.M., Syversveen, A.R., Lie, K.A., Tveranger, J., Nordbotten, J.M.: Impact of top-surface morphology on CO2 storage capacity. Int. J. Greenh. Gas Control 11(0), 221–235 (2012). doi:10.1016/j.ijggc.2012.08.012

    Article  Google Scholar 

  41. Nordbotten, J.M., Celia, M.A.: Geological Storage of CO2: Modeling Approaches for Large-Scale Simulation. John Wiley & Sons, Inc (2012)

  42. Nordbotten, J.M., Flemisch, B., Gasda, S.E., Nilsen, H.M., Fan, Y., Pickup, G.E., Wiese, B., Celia, M.A., Dahle, H.K., Eigestad, G.T., Pruess, K.: Uncertainties in practical simulation of CO2 storage. Int. J. Greenh. Gas Control 9(0), 234–242 (2012). doi:10.1016/j.ijggc.2012.03.007

    Article  Google Scholar 

  43. Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R., Church, J.A., Clarke, L., Dahe, Q., Dasgupta, P., et al.: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland (2014)

  44. Popova, O.H., Small, M.J., McCoy, S.T., Thomas, A.C., Rose, S., Karimi, B., Carter, K., Goodman, A.: Spatial stochastic modeling of sedimentary formations to assess CO2 storage potential. Environ. Sci. Technol. 48(11), 6247–6255 (2014). doi:10.1021/es501931r

    Article  Google Scholar 

  45. Roerdink, J.B.T.M., Meijster, A.: The watershed transform: Definitions, algorithms and parallelization strategies. Fund. inform. 41(1, 2), 187–228 (2000). doi:10.3233/FI-2000-411207

  46. Sylta, Ø.: Hydrocarbon migration modelling and exploration risk. Ph.D. thesis, Norwegian University of Science and Technology, Faculty of Engineering Science and Technology, Department of Geology and Mineral Resources Engineering (2004)

  47. U.S. Department of Energy, Office of Fossil Energy: The 2015 United States Carbon Utilization and Storage Atlas, 5th edn (2012). netl.doe.gov/research/coal/carbon-storage/atlasv

  48. Watson, F.E., Mathias, S.A., Daniels, S.E., Jones, R.R., Davies, R.J., Hedley, B.J., van Hunen, J.: Dynamic modeling of a UK North Sea saline formation for CO2 sequestration. Petrol. Geosci. 20(2), 169–185 (2014). doi:10.1144/petgeo2012-072

    Article  Google Scholar 

  49. Wei, L., Saaf, F.: Estimate CO2 storage capacity of the Johansen formation: numerical investigations beyond the benchmarking exercise. Comput. Geosci. 13(4), 451–467 (2009). doi:10.1007/s10596-008-9122-x

    Article  Google Scholar 

  50. Wolfe, P.: Convergence conditions for ascent methods. SIAM Rev. 11(2), 226–235 (1969). doi:10.1137/1011036

    Article  Google Scholar 

  51. Wolfe, P.: Convergence conditions for ascent methods. II: Some corrections. SIAM Rev. 13(2), 185–188 (1971). doi:10.1137/1013035

    Article  Google Scholar 

Download references

Acknowledgements

The work was funded in part by the Research Council of Norway through grant no. 243729 (Simulation and optimization of large-scale, aquifer-wide CO2 injection in the North Sea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Allen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen, R., Nilsen, H.M., Andersen, O. et al. On obtaining optimal well rates and placement for CO2 storage. Comput Geosci 21, 1403–1422 (2017). https://doi.org/10.1007/s10596-017-9631-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-017-9631-6

Keywords

Navigation