Bayesian model selection for complex geological structures using polynomial chaos proxy

Abstract

Different interpretation of sedimentary environments lead to “scenario uncertainty” where the prior reservoir model has a high level of discrete uncertainty. In a real field application, the scenario uncertainty has a considerable effect on flow response uncertainty and makes the uncertainty quantification problem highly nonlinear. We use clustering methods to address the scenario uncertainty. Our approach to cluster analysis is based on the posterior probabilities of models, known as “Bayesian model selection.” Accordingly, we integrate overall possible parameters in each scenario with respect to their corresponding priors to give the measure of how well a model is supported by observations. We propose a cluster-based reduced terms polynomial chaos proxy to efficiently estimate the posterior probability density function under each cluster and calculate the posterior probability of each model. We demonstrate that the convergence rate of the reduced terms polynomial chaos proxy is significantly improved under each cluster comparing to the non-clustered case. We apply the proposed cluster-based polynomial chaos proxy framework to study the plausibility of three training images based on different geological interpretation of the second layer of synthetic Stanford VI reservoir. We demonstrate that the proposed workflow can be efficiently used to calculate the posterior probability of each scenario and also sample from the posterior facies models within each scenario.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Bazargan, H., et al.: Surrogate accelerated sampling of reservoir models with complex structures using sparse polynomial chaos expansion. Adv. Water Resour. 86, 385–399 (2015)

    Article  Google Scholar 

  2. 2.

    Kendall, M.G.: Multivariate analysis. Macmillan, New York (1980)

    Google Scholar 

  3. 3.

    Erar, B.: Mixture model cluster analysis under different covariance structures using information complexity (2011)

  4. 4.

    Kaufman, L., Rousseeuw, P.J.: Finding groups in data: an introduction to cluster analysis, vol. 344. Wiley-Interscience (2009)

  5. 5.

    Anderberg, M.R.: Cluster Analysis for Applications, Tech. report, DTIC Document (1973)

  6. 6.

    Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32(3), 241254 (1967)

    Article  Google Scholar 

  7. 7.

    Teknomo, K.: K-means clustering tutorial. Medicine 100(4), 3 (2006)

    Google Scholar 

  8. 8.

    Svensen, M., Bishop, C.M.: Robust Bayesian mixture modelling. Neurocomputing 64, 235252 (2005)

    Article  Google Scholar 

  9. 9.

    Jeffreys, H.: Theory of probability. Oxford University Press (1998)

  10. 10.

    Cox, DR.: Tests of separate families of hypotheses (1961)

  11. 11.

    Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716723 (1974)

    Google Scholar 

  12. 12.

    Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461464 (1978)

    Article  Google Scholar 

  13. 13.

    Clyde, M., George, E.I.: Model uncertainty. Stat. Sci., 8194 (2004)

  14. 14.

    Andrieu, C., Doucet, A.: Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC. IEEE Trans. Signal Process. 47(10), 26672676 (1999)

    Article  Google Scholar 

  15. 15.

    Andrieu, C., De Freitas, N., Doucet, A.: Sequential MCMC for Bayesian model selection Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics 1999, p 130134. IEEE (1999)

  16. 16.

    Chipman, H., George, E.I., McCulloch, R.E., Clyde, M., Foster, D.P., Stine, R.A.: The practical implementation of Bayesian model selection. Lecture Notes Monograph Series, 65134 (2001)

  17. 17.

    Carlin, B.P., Chib, S.: Bayesian model choice via Markov chain Monte Carlo methods. J. R. Stat. Soc. Ser. B Methodol., 473484 (1995)

  18. 18.

    Green, P.J.: Reversible jump Markov chain Monte Carlo computation and bayesian model determination. Biometrika 82(4), 711732 (1995)

    Article  Google Scholar 

  19. 19.

    Kass, R.E., Raftery, A.E.: Bayes factors. J. Am. Stat. Assoc. 90(430), 773795 (1995)

    Article  Google Scholar 

  20. 20.

    Raftery, A.E., Gneiting, T., Balabdaoui, F., Polakowski, M.: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Weather. Rev. 133(5), 11551174 (2005)

    Article  Google Scholar 

  21. 21.

    Gel, Y., Raftery, A.E., Gneiting, T.: Calibrated probabilistic mesoscale weather field forecasting: the geostatistical output perturbation method. J. Am. Stat. Assoc. 99(467), 575583 (2004)

    Google Scholar 

  22. 22.

    Gallagher, K., Charvin, K., Nielsen, S., Sambridge, M., Stephenson, J.: Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for earth science problems. Mar. Pet. Geol. 26(4), 525535 (2009)

    Article  Google Scholar 

  23. 23.

    McLachlan, G.J., Bean, R.W., Peel, D.: A mixture model-based approach to the clustering of microarray expression data. Bioinformatics 18(3), 413422 (2002)

    Article  Google Scholar 

  24. 24.

    Everitt, B.S., Hand, D.J.: Finite mixture distributions, Monographs on Applied Probability and Statistics, vol. 1. Chapman and Hall, London (1981)

  25. 25.

    Forgy, E.W.: Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 21, 768769 (1965)

    Google Scholar 

  26. 26.

    MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, p 14, California, USA (1967)

  27. 27.

    Goodman, S.N.: Toward evidence-based medical statistics. 2: the Bayes factor. Ann. Intern. Med. 130(12), 1005–1013 (1999)

    Article  Google Scholar 

  28. 28.

    Madigan, D., Raftery, A.E.: Model selection and accounting for model uncertainty in graphical models using Occam’s window. J. Am. Stat. Assoc. 89(428), 15351546 (1994)

    Article  Google Scholar 

  29. 29.

    Carlin, B.P., Chib, S.: Bayesian model choice via Markov chain Monte Carlo methods. J. R. Stat. Soc. Ser. B Methodol., 473484 (1995)

  30. 30.

    Godsill, S.J.: On the relationship between MCMC model uncertainty methods. Citeseer (1998)

  31. 31.

    Richardson, S., Green, P.J.: On Bayesian analysis of mixtures with an unknown number of components (with discussion). J. R. Stat. Soc. Ser. B (Stat Methodol.) 59(4), 731792 (1997)

    Article  Google Scholar 

  32. 32.

    Andrieu, C., Doucet, A., Robert, C.P.: Computational advances for and from Bayesian analysis. Stat. Sci. 19(1), 118127 (2004)

    Google Scholar 

  33. 33.

    Tierney, L., Kadane, J.B.: Accurate approximations for posterior moments and marginal densities. J. Am. Stat. Assoc. 81(393), 8286 (1986)

    Article  Google Scholar 

  34. 34.

    Chipman, H., George, E.I., McCulloch, R.E., Clyde, M., Foster, D.P., Stine, R.A.: The practical implementation of Bayesian model selection. Lecture Notes Monograph Series, 65134 (2001)

  35. 35.

    McCulloch, R., Rossi, P.E.: An exact likelihood analysis of the multinomial probit model. J. Econ. 64(1), 207–240 (1994)

    Article  Google Scholar 

  36. 36.

    Wasserman, L.: Asymptotic inference for mixture models by using data-dependent priors. J. R. Stat. Soc. Ser. B (Stat Methodol.) 62(1), 159180 (2000)

    Article  Google Scholar 

  37. 37.

    Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)

    Article  Google Scholar 

  38. 38.

    Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B Methodol., 267288 (1996)

  39. 39.

    Draper, D.: Assessment and propagation of model uncertainty. J. R. Stat. Soc. Ser. B Methodol., 4597 (1995)

  40. 40.

    Leamer, E.E.: Specification searches: ad hoc inference with nonexperimental data. Wiley, New York (1978)

    Google Scholar 

  41. 41.

    George, E.I.: The variable selection problem. J. Am. Stat. Assoc. 95(452), 13041308 (2000)

    Article  Google Scholar 

  42. 42.

    Chatfield, C.: Model uncertainty. Encyclopedia of Environmetrics (1995)

  43. 43.

    Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proc. IEEE 90(7), 11511163 (2002)

    Article  Google Scholar 

  44. 44.

    Scheidt, C., Caers, J.: A new method for uncertainty quantification using distances and kernel methods. Application to a deepwater turbidite reservoir, SPEJ SPE-118740-PA (2009)

  45. 45.

    Scheidt, C., Caers, J.: Uncertainty quantification in reservoir performance using distances and kernel methods—application to a West Africa deepwater turbidite reservoir. SPE J. 14(4), 680692 (2009)

    Article  Google Scholar 

  46. 46.

    Rojas, T., Demyanov, V., Christie, M., Arnold, D.: Reducing uncertainty in modelling fluvial reservoirs by using intelligent geological priors. Geostatistical Congress, Olso (2012)

    Google Scholar 

  47. 47.

    Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2, 4566 (2002)

    Google Scholar 

  48. 48.

    Park, H., Scheidt, C., Fenwick, D., Boucher, A., Caers, J.: History matching and uncertainty quantification of facies models with multiple geological interpretations. Comput. Geosci., 113 (2013)

  49. 49.

    Castro, S., Caers, J., Mukerji, T.: The stanford vi reservoir, Stanford Center for Reservoir Forecasting (SCRF), Annual Report (2005)

  50. 50.

    Strebelle, S.: Conditional simulation of complex geological structures using multiple-point statistics. Math. Geol. 34(1), 121 (2002)

    Article  Google Scholar 

  51. 51.

    Niederreiter, H.: Low-discrepancy and low-dispersion sequences. J. Number Theory 30(1), 51–70 (1988)

    Article  Google Scholar 

  52. 52.

    Sloan, I.H., Wozniakowski, H.: When are quasi-monte carlo algorithms efficient for high dimensional integrals?. J. Complex. 14(1), 133 (1998)

    Article  Google Scholar 

  53. 53.

    Caflisch, R.E.: Monte carlo and quasi-monte carlo methods. Acta numerica, 1–49 (1998)

  54. 54.

    Novak, E., Ritter, K.: High dimensional integration of smooth functions over cubes. Numer. Math. 75(1), 7997 (1996)

    Article  Google Scholar 

  55. 55.

    Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numerical algorithms 18(3-4), 209232 (1998)

    Google Scholar 

  56. 56.

    Sobol, I.M.: On quasi-monte carlo integrations. Math. Comput. Simul. 47(2), 103112 (1998)

    Google Scholar 

  57. 57.

    Raftery, A.E., Madigan, D., Hoeting, J.A.: Bayesian model averaging for linear regression models. J. Am. Stat. Assoc. 92(437), 179191 (1997)

    Article  Google Scholar 

  58. 58.

    Wiener, N.: The homogeneous chaos. Am. J. Math. 60.4, 897–936 (1938)

    Article  Google Scholar 

  59. 59.

    Cameron, R., Martin, W.: The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals. Ann. Math. 48, 385 (1947)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hamid Bazargan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bazargan, H., Christie, M. Bayesian model selection for complex geological structures using polynomial chaos proxy. Comput Geosci 21, 533–551 (2017). https://doi.org/10.1007/s10596-017-9629-0

Download citation

Keywords

  • Bayesian parameter estimation
  • Multiple training image
  • Bayesian model selection
  • Polynomial chaos expansion
  • Mixture modeling