Skip to main content

Advertisement

Log in

A low-dimensional subsurface model for saturated and unsaturated flow processes: ability to address heterogeneity

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

A low-dimensional model that describes both saturated and unsaturated flow processes in a single equation is presented. Subsurface flow processes in the groundwater, the vadose zone, and the capillary fringe are accounted for through the computation of aggregated hydrodynamic parameters that result from the integration of the governing flow equations from the bedrock to the land surface. The three-dimensional subsurface flow dynamics are thus described by a two-dimensional equation, allowing for a drastic reduction of model unknowns and simplification of the model parameterizations. This approach is compared with a full resolution of the Richards equation in different synthetic test cases. Because the model reduction stems from the vertical integration of the flow equations, the test cases all use different configurations of heterogeneity for vertical cross-sections of a soil-aquifer system. The low-dimensional flow model shows strong consistency with results from a complete resolution of the Richards equation for both the water table and fluxes. The proposed approach is therefore well suited to the accurate reproduction of complex subsurface flow processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M. G., Burt, T. P.: The role of topography in controlling through flow generation. Earth Surf. Process. 3, 331–44 (1978)

    Article  Google Scholar 

  2. Aubert, D., Probst, A., Stille, P., Viville, D.: Evidence of hydrological control of Sr behaviour in stream water (Strengbach catchment, Vosges Mountains, France). Appl. Geochem. 17(3), 285–300 (2002). doi:10.1016/S0883-2927(01)00080-4

    Article  Google Scholar 

  3. Belfort, B., Lehmann, F.: A comparison of equivalent conductivities for numerical simulation of one-dimensional unsaturated flow. Vadose Zone J. 4, 1191–1200 (2005)

    Article  Google Scholar 

  4. Belfort, B., Ramasomanana, F., Younes, A., Lehmann, F.: An efficient lumped mixed hybrid finite element formulation for variably saturated groundwater flow. Vadose Zone J. 8, 352–362 (2009). doi:10.2136/vzj2008.0108

    Article  Google Scholar 

  5. Boussinesq, J.: Essai sur la théorie des eaux courantes. Mem. Acad. Sci. Inst. Fr. 23(1), 252–260 (1877)

    Google Scholar 

  6. Broda, S., Larocque, M., Paniconi, C., Haitjema, H.: A low-dimensional hillslope-based catchment model for layered groundwater flow. Hydrol. Process. 26, 2814–2826 (2012). doi:10.1002/hyp.8319

    Article  Google Scholar 

  7. Brutsaert, W.: The unit response of groundwater outflow from a hillslope. Water Resour. Res. 30, 2759–2763 (1994)

    Article  Google Scholar 

  8. Camporese, M., Paniconi, C., Putti, M, Orlandini, S.: Surface-subsurface flow modeling with path-based runoff routing, boundary condition-based coupling, and assimilation of multisource observation data. Water Resour. Res. 46(2), W02512 (2010). doi:10.1029/2008WR00753

    Article  Google Scholar 

  9. Cloke, H. L., Anderson, M. G., McDonnell, J. J., Renaud, J. P.: Using numerical modelling to evaluate the capillary fringe groundwater ridging hypothesis of streamflow generation. J. Hydrol. 316(1–4), 141–162 (2006)

    Article  Google Scholar 

  10. Curtu, R., Mantilla, R., Fonley, M., Cunha, L. K., Small, S. J., Jay, L. O., Krajewski, W. F.: An integral-balance nonlinear model to simulate changes in soil moisture, groundwater, and surface runoff dynamics at the hillslope scale. Adv. Water Resour. 71, 125–139 (2014). doi:10.1016/j.advwatres.2014.06.003

    Article  Google Scholar 

  11. De Marsily, G.: Quantitative Hydrogeology: Groundwater Hydrology for Engineers—Second Edition. Academic Press, San Diego, CA (1996)

    Google Scholar 

  12. Duffy, C.: A two-state integral-balance model for soil moisture and groundwater dynamics in complex terrain. Water Resour. Res. 32, 2421–2434 (1996)

    Article  Google Scholar 

  13. Dunne, T., Zhang, W., Aubry, B. F.: Effects of rainfall, vegetation, and microtopography on infiltration and runoff. Water Resour. Res. 27(9), 2271–2285 (1991)

    Article  Google Scholar 

  14. Ebel, B. A., Loague, K.: Physics-based hydrologic-response simulation: seeing through the fog of equifinality. Hydrol. Process. 20(13), 2887–2900 (2006). doi:10.1002/hyp.6388

    Article  Google Scholar 

  15. Fiori, A., Romanelli, M., Cavalli, D. J., Russo, D.: Numerical experiments of streamflow generation in steep catchments. J. Hydrol. 339(3–4), 183–192 (2007)

    Article  Google Scholar 

  16. Freer, J. E., McDonnell, J. J., Beven, K., Peters, N. E., Burns, D. A., Hooper, R. P., Aulenbach, B. T., Kendall, C.: The role of bedrock topography on subsurface stormflow. Water Resour. Res. 38(12), 1269 (2002). doi:10.1029/2001WR000872

    Article  Google Scholar 

  17. Freeze, R. A., Harlan, R. L.: Blue-print for a physically-based digitally simulated hydrologic response model. J. Hydrol. 9, 237–258 (1969)

    Article  Google Scholar 

  18. Freeze, R. A.: Role of subsurface flow in generating surface runoff 1. Base flow contributions to channel flow. Water Resour. Res. 8(3), 609–623 (1972)

    Article  Google Scholar 

  19. Freeze, R. A.: Role of subsurface flow in generating surface runoff 2. Upstream source areas. Water Resour. Res. 8, 1272–1283 (1972)

    Article  Google Scholar 

  20. Gunduz, O., Aral, M. M.: River networks and groundwater flow: a simultaneous solution of a coupled system. J. Hydrol. 301(1–4), 216–234 (2005). doi:10.1016/j.jhydrol.2004.06.034

    Article  Google Scholar 

  21. Heppner, C. S., Ran, Q. H., VanderKwaak, J. E., Loague, K.: Adding sediment transport to the integrated hydrology model (InHM): development and testing. Adv. Water Resour. 29(6), 930–943 (2007). doi:10.1016/j.advwatres.2005.08.003

    Article  Google Scholar 

  22. Hilberts, A. G. J., Troch, P. A., Paniconi, C., Boll, J.: Low-dimensional modeling of hillslope subsurface flow: relationship between rainfall, recharge, and unsaturated storage dynamics. Water Resour. Res. 43, W03445 (2007). doi:10.1029/2006WR004964

    Article  Google Scholar 

  23. Huyakorn, P. S., Pinder, G. F.: Computational Methods in Subsurface Flow. Academic Press, Orlando, FL (1983)

    Google Scholar 

  24. Loague, K. M.: Impact of rainfall and soil hydraulic property information on runoff predictions at the hillslope scale. Water Resour. Res. 24(9), 1501–1510 (1988)

    Article  Google Scholar 

  25. Maxwell, R. M., Condon, L. E., Kollet, S. J.: A high resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3. Geosci. Model Dev. 8, 923–937 (2015). doi:10.5194/gmd-8-1-2015

    Article  Google Scholar 

  26. Mirus, B.B., Ebel, B.A., Heppner, C.S., Loague, K.: Assessing the detail needed to capture rainfall-runoff dynamics with physics-based hydrologic response simulation. Water Resour. Res 47, W00H10 (2011). doi:10.1029/2010WR009906

    Article  Google Scholar 

  27. Niu, G. Y., Paniconi, C., Troch, P. A., Scott, R. L., Durcik, M., Zeng, X., Huxman, T., Goodrich, D. C.: An integrated modelling framework of catchment-scale ecohydrological processes: 1. Model description and tests over an energy-limited watershed. Ecohydrology 7(2), 427–439 (2014). doi:10.1002/eco.1362 10.1002/eco.1362

    Article  Google Scholar 

  28. Niu, G. Y., Troch, P. A., Paniconi, C., Scott, R. L., Durcik, M., Zeng, X., Huxman, T., Goodrich, D. C., Pelletier, J.: An integrated modelling framework of catchment-scale ecohydrological processes: 2. The role of water subsidy by overland flow on vegetation dynamics in a semi-arid catchment. Ecohydrology 7(2), 815–827 (2014). doi:10.1002/eco.1405

    Article  Google Scholar 

  29. Pan, Y., Weill, S., Ackerer, P., Delay, F.: A coupled stream flow and depth-integrated subsurface flow model for catchment hydrology. J. Hydrol. 530, 66–78 (2015). doi:10.1016/j.jhydrol.2015.09.44

    Article  Google Scholar 

  30. Paniconi, C., Troch, P. A., van Loon, E. E., Hilberts, A. G. J.: Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 2. Intercomparison with a three-dimensional Richards equation model. Water Resour. Res. 39(11), 1317 (2003). doi:10.1029/2002WR001730

  31. Partington, D., Brunner, P., Frei, S., Simmons, C. T., Werner, A. D., Therrien, R., Maier, H. R., Dandy, G. C., Fleckensetein, J. H.: Interpreting streamflow generation mechanisms from integrated surface-subsurface flow models of a riparian wetland and catchment. Water Resour. Res. 9, 5501–5519 (2013). doi:10.1002/wrcr.20405

    Article  Google Scholar 

  32. Penna, D., van Meerveld, H. T., Gobbi, A., Borga, M., Fontana, G. D.: The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrol. Earth Syst. Sci. 15, 698–702 (2011)

  33. Ran, Q. H., Loague, K., VanderKwaak, J. E.: Hydrologic-response-driven sediment transport at a regional scale, process-based simulation. Hydrol. Process. 26(2), 159–167 (2012). doi:10.1002/hyp.8122

    Article  Google Scholar 

  34. Reggiani, P., Sivapalan, M., Hassanizadeh, S.: A unifying framework for watershed thermodynamics: balance equations for mass, momentum, energy and entropy, and the second law of thermodynamics. Adv. Water Resour. 22, 367–398 (1998)

    Article  Google Scholar 

  35. Reggiani, P., Hassanizadeh, S., Sivapalan, M., Gray, W.: A unifying framework for watershed thermodynamics: constitutive relationships. Adv. Water Resour. 23, 15–39 (1999)

    Article  Google Scholar 

  36. Sloan, W. T.: A physics-based function for modeling transient groundwater discharge at the watershed scale. Water Resour. Res. 36(1), 225–241 (2000)

    Article  Google Scholar 

  37. Sulis, M., Paniconi, C., Camporese, M.: Impact of grid resolution on the integrated and distributed response of a coupled surface-subsurface hydrological model for the des Anglais catchment, Quebec. Hydrol. Process. 25(12), 1853–1865 (2011). doi:10.1002/hyp.7941

    Article  Google Scholar 

  38. Sulis, S., Paniconi, C., Rivard, C., Harvey, R., Chaumont, D.: Assessment of climate change impacts at the catchment scale with a detailed hydrological model of surface-subsurface interactions and comparison with a land surface model. Water Resour. Res. 47, W01513 (2011). doi:10.1029/2010WR009167

    Article  Google Scholar 

  39. Torres, R. W., Dietrich, E., Montgomery, D. R., Anderson, S. P., Loague, K.: Unsaturated zone processes and the hydrologic response of a steep, unchanneled catchment. Water Resour. Res. 34(8), 1865–1879 (1998)

    Article  Google Scholar 

  40. Troch, P. A., Paniconi, C., van Loon, E. E.: Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 1. Formulation and characteristic response. Water Resour. Res. 39 (11), 1316 (2003). doi:10.1029/2002WR001728

  41. VanderKwaak, J.: Numerical simulation of flow and chemical transport in integrated surface-subsurface hydrologic systems. PhD thesis, University of Waterloo, Canada, p. 217 (1999)

  42. Van Genuchten, M.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. 44, 892–898 (1980)

  43. van Meerveld, I. T., Peters, N. E., McDonnell, J. J.: Effect of bedrock permeability on subsurface stormflow and the water balance of a trenched hillslope at the Panola Mountain Research Watershed, Georgia. USA. Hydrol. Process. 21(6), 750–769 (2007)

  44. Younes, A., Ackerer, P., Delay, F.: Mixed finite element for solving 2d diffusion-type equations. Rev. Geophys. 48, RG1004 (2010). doi:10.1029/2008RG000277

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Weill.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weill, S., Delay, F., Pan, Y. et al. A low-dimensional subsurface model for saturated and unsaturated flow processes: ability to address heterogeneity. Comput Geosci 21, 301–314 (2017). https://doi.org/10.1007/s10596-017-9613-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-017-9613-8

Keywords

Navigation