Skip to main content
Log in

Quantifying initial and wind forcing uncertainties in the Gulf of Mexico

Computational Geosciences Aims and scope Submit manuscript

Abstract

This study aims at analyzing the combined impact of uncertainties in initial conditions and wind forcing fields in ocean general circulation models (OGCM) using polynomial chaos (PC) expansions. Empirical orthogonal functions (EOF) are used to formulate both spatial perturbations to initial conditions and space-time wind forcing perturbations, namely in the form of a superposition of modal components with uniformly distributed random amplitudes. The forward deterministic HYbrid Coordinate Ocean Model (HYCOM) is used to propagate input uncertainties in the Gulf of Mexico (GoM) in spring 2010, during the Deepwater Horizon oil spill, and to generate the ensemble of model realizations based on which PC surrogate models are constructed for both localized and field quantities of interest (QoIs), focusing specifically on sea surface height (SSH) and mixed layer depth (MLD). These PC surrogate models are constructed using basis pursuit denoising methodology, and their performance is assessed through various statistical measures. A global sensitivity analysis is then performed to quantify the impact of individual modes as well as their interactions. It shows that the local SSH at the edge of the GoM main current—the Loop Current—is mostly sensitive to perturbations of the initial conditions affecting the current front, whereas the local MLD in the area of the Deepwater Horizon oil spill is more sensitive to wind forcing perturbations. At the basin scale, the SSH in the deep GoM is mostly sensitive to initial condition perturbations, while over the shelf it is sensitive to wind forcing perturbations. On the other hand, the basin MLD is almost exclusively sensitive to wind perturbations. For both quantities, the two sources of uncertainty have limited interactions. Finally, the computations indicate that whereas local quantities can exhibit complex behavior that necessitates a large number of realizations, the modal analysis of field sensitivities can be suitably achieved with a moderate size ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexanderian, A., Winokur, J., Sraj, I., Srinivasan, A., Iskandarani, M., Thacker, W.C., Knio, O.M.: Global sensitivity analysis in an ocean general circulation model: a sparse spectral projection approach. Comput. Geosci. 16(3), 757–778 (2012)

    Article  Google Scholar 

  2. Alvera-Azcárate, A., Barth, A., Rixen, M., Beckers, J.M.: Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the adriatic sea surface temperature. Ocean Model. 9 (4), 325–346 (2005)

    Article  Google Scholar 

  3. Blatman, G., Sudret, B.: Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 230(6), 2345–2367 (2011)

    Article  Google Scholar 

  4. Bleck, R.: An oceanic general circulation model framed in hybrid isopycnic cartesian coordinates. Ocean Modell. 4(1), 55–88 (2002). doi:10.1016/S1463-5003(01)00012-9

    Article  Google Scholar 

  5. Chassignet, E.P., Hurlburt, H.E., Smedstad, O.M., Halliwell, G.R., Hogan, P.J., Wallcraft, A.J., Baraille, R., Bleck, R.: The hycom (hybrid coordinate ocean model) data assimilative system. J. Mar. Syst. 65(1-4), 60–83 (2007). doi:10.1016/j.jmarsys.2005.09.016

    Article  Google Scholar 

  6. Chen, S.S., Curcic, M.: Ocean surface waves in hurricane ike (2008) and superstorm sandy (2012): Coupled model predictions and observations Ocean Modelling (2015)

  7. Conrad, P.R., Marzouk, Y.M.: Adaptive smolyak pseudospectral approximations. SIAM J. Sci. Comput. 35(6), A2643–A2670 (2013)

    Article  Google Scholar 

  8. Constantine, P.G., Eldred, M.S., Phipps, E.T.: Sparse pseudospectral approximation method. Comput. Methods Appl. Mech. Eng. 229, 1–12 (2012)

    Article  Google Scholar 

  9. Crestaux, T., Le Maître, O., Martinez, J.M.: Polynomial chaos expansion for sensitivity analysis. Reliab. Eng. Syst. Saf. 94(7), 1161–1172 (2009)

    Article  Google Scholar 

  10. Doostan, A., Owhadi, H.: A non-adapted sparse approximation of pdes with stochastic inputs. J. Comput. Phys. 230(8), 3015–3034 (2011)

    Article  Google Scholar 

  11. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al.: Least angle regression. Ann. Stat. 32(2), 407–499 (2004)

    Article  Google Scholar 

  12. Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res 99(C5), 10,143–10,162 (1994)

    Article  Google Scholar 

  13. Gerstner, T., Griebel, M.: Dimension-adaptive tensor—product quadrature. Computing 71(1), 65–87 (2003)

    Article  Google Scholar 

  14. Ghanem, R.G., Spanos, P.D.: Stochastic finite elements: a spectral approach. Springer-Verlag, New York (1991)

    Book  Google Scholar 

  15. Hodur, R.M.: The naval research laboratorys coupled ocean/atmosphere mesoscale prediction system (coamps). Mon. Weather Rev. 125, 1414–1430 (1997). doi:10.1175/1520-0493(1997)125%3C1414:TNRLSC%3E2.0.CO;2

    Article  Google Scholar 

  16. Homma, T., Saltelli, A.: Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 52(1), 1–17 (1996)

    Article  Google Scholar 

  17. Ichiye, T.: Circulation and water mass distribution in the gulf of Mexico. Geofis. Int. 2(3), 47–76 (1962)

    Google Scholar 

  18. Kac, M., Siegert, A.: An explicit representation of a stationary gaussian process. Annals of Mathematical Statistics, 438–442 (1947)

  19. Karhunen, K.: Über lineare Methoden in der Wahrscheinlichkeitsrechnung, vol. 37. Universitat Helsinki (1947)

  20. Keppenne, C., Rienecker, M.: Initial testing of a massively parallel ensemble Kalman filter with the Poseidon isopycnal ocean general circulation model. Mon. Weather. Rev. 130(12), 2951–2965 (2002)

    Article  Google Scholar 

  21. Knio, O.M., Najm, H.N., Ghanem, R.G., et al.: A stochastic projection method for fluid flow: i. basic formulation. J. Comput. Phys. 173(2), 481–511 (2001)

    Article  Google Scholar 

  22. Le Hénaff, M., Kourafalou, V.H., Paris, C., Helgers, J., Aman, Z.M., Hogan, P.J., Srinivasan, A.: Surface evolution of the deepwater horizon oil spill patch: combined effects of circulation and wind-induced drift. Environ. Sci. Tech. 46(13), 7267–7273 (2012)

    Article  Google Scholar 

  23. Le Maître, O.P., Knio, O.M.: Spectral methods for uncertainty quantification: with applications to computational fluid dynamics. Springer Science & Business Media (2010)

  24. Le Maître, O.P., Najm, H.N., Pébay, P.P., Ghanem, R.G., Knio, O.M.: Multi-resolution-analysis scheme for uncertainty quantification in chemical systems. SIAM J. Sci. Comput. 29(2), 864–889 (2007)

    Article  Google Scholar 

  25. Le Maître, O.P., Reagan, M.T., Najm, H.N., Ghanem, R.G., Knio, O.M.: A stochastic projection method for fluid flow: Ii. random process. J. Comput. Phys. 181(1), 9–44 (2002)

    Article  Google Scholar 

  26. Loève, P.: Fonctions Aléatoires Du Second Ordre, a Note in P. Lévy, Processus Stochastiques Et Mouvement Brownien. Gauthier-Villars, Paris (1948)

    Google Scholar 

  27. Marzouk, Y.M., Najm, H.N.: Dimensionality reduction and polynomial chaos acceleration of bayesian inference in inverse problems. J. Comput. Phys. 228(6), 1862–1902 (2009)

    Article  Google Scholar 

  28. McKay, M.D., Beckman, R.J., Conover, W.J.: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    Google Scholar 

  29. Najm, H.N., Debusschere, B.J., Marzouk, Y.M., Widmer, S., Le Maître, O.: Uncertainty quantification in chemical systems. Int. J. Numer. Methods Eng. 80(6), 789 (2009)

    Article  Google Scholar 

  30. Peng, J., Hampton, J., Doostan, A.: A weighted l1-minimization approach for sparse polynomial chaos expansions. J. Comput. Phys. 267, 92–111 (2014)

    Article  Google Scholar 

  31. Schmitz, W.J.: Cyclones and Westward Propagation in the Shedding of Anticyclonic Rings from the Loop Current. In: Sturges, W., Lugo-Fernandez, A. (eds.) Circulation in the Gulf of Mexico: Observations and Models, Geophysical Monograph Series, vol. 161, pp 241–261. American Geophysical Union, Washington, D.C (2005)

  32. Sheather, S.J., Jones, M.C.: A reliable data-based bandwidth selection method for kernel density estimation. J. Royal Stat. Soc. Ser. B (Methodological) 53(3), 683–690 (1991). http://www.jstor.org/stable/2345597

    Google Scholar 

  33. Sobol, I.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1, 407–414 (1993)

    Google Scholar 

  34. Sraj, I., Iskandarani, M., Srinivasan, A., Thacker, W.C., Winokur, J., Alexanderian, A., Lee, C.Y., Chen, S.S., Knio, O.M.: Bayesian inference of drag parameters using axbt data from typhoon fanapi. Mon. Weather. Rev. 141(7), 2347–2367 (2013)

    Article  Google Scholar 

  35. Sraj, I., Maître, O.P.L., Knio, O.M., Hoteit, I.: Coordinates transformation and polynomial chaos for the bayesian inference of a gaussian process with parametrized prior covariance function. arXiv preprint arXiv:1501.03323 (2015)

  36. Thacker, W.C., Srinivasan, A., Iskandarani, M., Knio, O.M., Le Henaff, M.: Propagating boundary uncertainties using polynomial expansions. Ocean Model. 43, 52–63 (2012)

    Article  Google Scholar 

  37. Van Den Berg, E., Friedlander, M.: Spgl1: a solver for large-scale sparse reconstruction (2007)

  38. Van Den Berg, E., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31(2), 890–912 (2008)

    Article  Google Scholar 

  39. Winokur, J., Conrad, P., Sraj, I., Knio, O., Srinivasan, A., Thacker, W.C., Marzouk, Y., Iskandarani, M.: A priori testing of sparse adaptive polynomial chaos expansions using an ocean general circulation model database. Comput. Geosci. 17(6), 899–911 (2013)

    Article  Google Scholar 

  40. Winokur, J.G.: Adaptive sparse grid approaches to polynomial chaos expansions for uncertainty quantification. Ph.D. thesis Duke University (2015)

  41. Xiu, D., Karniadakis, G.E.: The wiener–askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar M. Knio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Iskandarani, M., Hénaff, M.L. et al. Quantifying initial and wind forcing uncertainties in the Gulf of Mexico. Comput Geosci 20, 1133–1153 (2016). https://doi.org/10.1007/s10596-016-9581-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-016-9581-4

Keywords

Navigation