Skip to main content

Determination of lower and upper bounds of predicted production from history-matched models


We present a method to determine lower and upper bounds to the predicted production or any other economic objective from history-matched reservoir models. The method consists of two steps: 1) performing a traditional computer-assisted history match of a reservoir model with the objective to minimize the mismatch between predicted and observed production data through adjusting the grid block permeability values of the model. 2) performing two optimization exercises to minimize and maximize an economic objective over the remaining field life, for a fixed production strategy, by manipulating the same grid block permeabilities, however without significantly changing the mismatch obtained under step 1. This is accomplished through a hierarchical optimization procedure that limits the solution space of a secondary optimization problem to the (approximate) null space of the primary optimization problem. We applied this procedure to two different reservoir models. We performed a history match based on synthetic data, starting from a uniform prior and using a gradient-based minimization procedure. After history matching, minimization and maximization of the net present value (NPV), using a fixed control strategy, were executed as secondary optimization problems by changing the model parameters while staying close to the null space of the primary optimization problem. In other words, we optimized the secondary objective functions, while requiring that optimality of the primary objective (a good history match) was preserved. This method therefore provides a way to quantify the economic consequences of the well-known problem that history matching is a strongly ill-posed problem. We also investigated how this method can be used as a means to assess the cost-effectiveness of acquiring different data types to reduce the uncertainty in the expected NPV.


  1. Aanonsen, S.I., Nævdal, G., Oliver, D.S., Reynolds, A.C., Vallès, B.: The ensemble Kalman filter in reservoir engineering—a review. SPE J. 14(3), 393–412 (2009). doi:10.2118/117274-PA

    Article  Google Scholar 

  2. Bratvold, R.B., Bickel, J.E., Lohne, H.P.: Value of information in the oil and gas industry: past, present, and future. SPE J. 12(4), 630–638 (2009). doi:10.2118/110378-PA

    Google Scholar 

  3. Chen, Y., Oliver, D.S., Zhang, D.: Efficient ensemble-based closed-loop production optimization. SPE J. 14(4), 634–645 (2009). doi:10.2118/112873-PA

    Article  Google Scholar 

  4. Chen, C., Li, G., Reynolds, A., et al.: Robust constrained optimization of short-and long-term net present value for closed-loop reservoir management. SPE J. 17(03), 849–864 (2012). doi:10.2118/141314--PA

    Article  Google Scholar 

  5. den Dekker, A.J., Bombois, X., Van den Hof, P.M.J.: Finite sample confidence regions for parameters in prediction error identification using output error models. Proc. 17th IFAC World Congress, Seoul Korea, 6-11-July (2008)

  6. Eidsvik, J., Mukerji, T., Bhattacharjya, D.: Value of Information in the Earth Sciences. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  7. Evensen, G.: Data Assimilation: the Ensemble Kalman Filter. Springer, Berlin (2009)

    Book  Google Scholar 

  8. Fonseca, R.M., Leeuwenburgh, O., Van den Hof, P.M.J., Jansen, J.D.: Ensemble-based hierarchical multi-objective production optimization of smart wells. Comput. Geosci. 18(3-4), 449–461 (2014). doi:10.1007/s10596-013-9399-2

    Article  Google Scholar 

  9. Fonseca, R.M., Leeuwenburgh, O., Della Rossa, E., Van den Hof, P.M.J., Jansen, J.D.: Ensemble-based multi-objective optimization of on-off control devices under geological uncertainty. SPE Reserv. Eval. Eng. 18(4), 1094–6470 (2015). doi:10.2118/173268-PA

  10. Haimes, Y.Y., Li, D.: Hierarchical multiobjective analysis for large-scale systems: review and current status. Automatica 24(1), 53–69 (1988). doi:10.1016/0005-1098(88)90007-6

    Article  Google Scholar 

  11. Jansen, J.D.: Adjoint-based optimization of multiphase flow through porous media—a review. Comput. Fluids 46(1), 40–51 (2011). doi:10.1016/j.compfluid.2010.09.039

    Article  Google Scholar 

  12. Kraaijevanger, J.F.B.M., Egberts, P.J.P., Valstar, J.R., Buurman, H.W.: Optimal Waterflood Design Using the Adjoint Method. Paper 105764 Presented at the SPE Reservoir Simulation Symposium, Houston Texas U.S.A. February (2007)

  13. Liu, X., Reynolds, A.C.: Gradient-based multiobjective optimization with applications to waterflooding optimization. Comput. Geosci. 20(3), 677–693 (2014). doi:10.1007/s10596-015-9523-6

  14. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26(6), 369–395 (2004). doi:10.1007/s00158-003-0368-6

    Article  Google Scholar 

  15. Oliver, D.S., Reynolds, A.C., Liu, N.: Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  16. Peters, E., Chen, Y., Leeuwenburgh, O., Oliver, DS.: Extended Brugge benchmark case for history matching and water flooding optimization. Comput. Geosci. 50, 16–24 (2013). doi:10.1016/j.cageo.2012.07.018

    Article  Google Scholar 

  17. Peters, L., Arts, R., Brouwer, G., Geel, C., Cullick, S., Lorentzen, R.J., Chen, Y., Dunlop, N., Vossepoel, F.C., Xu, R.: Results of the Brugge benchmark study for flooding optimization and history matching. SPE Reserv. Eval. Eng. 13(3), 391–405 (2010). doi:10.2118/119094-PA

    Article  Google Scholar 

  18. Quinn, S.L., Harris, T.J., Bacon, D.W.: Accounting for uncertainty in control-relevant statistics. J. Process. Control. 15(6), 675–690 (2005). doi:10.1016/j.jprocont.2005.01.002

    Article  Google Scholar 

  19. Spall, J.C.: Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE Trans. Aerosp. Electron. Syst. 34(3), 817–823 (1998). doi:10.1109/7.705889

    Article  Google Scholar 

  20. Tavassoli, Z., Carter, J.N., King, P.R.: Errors in history matching. SPE J. 9(3), 352–361 (2004). doi:10.2118/86883-pa

    Article  Google Scholar 

  21. van Essen, G.M., Zandvliet, M.J., Van den Hof, P.M.J., Bosgra, O.H., J.d., J.: Robust waterflooding optimization of multiple geological scenarios. SPE J. 14(1), 202–210 (2009). doi:10.2118/102913-PA

    Article  Google Scholar 

  22. van Essen G.M., Jansen, J.D., Van den Hof, P.M.J.: Determination of lower and upper bounds of predicted production from history-matched models. Proc. 12th European Conference on Mathematics in Oil Recovery (ECMOR XII), Oxford, UK, 6-9 September (2010)

  23. van Essen, G.M., Van den Hof, P.M.J., J.d., J.: Hierarchical long-term and short-term production optimization. SPE J. 16(1), 191–199 (2011). doi:10.2118/124332-PA

    Article  Google Scholar 

  24. Watson, A.T., Gavalas, G.R., Seinfeld, J.H.: Identifiability of estimates of two-phase reservoir properties in history matching. SPE J. 24(6), 697–706 (1984). doi:10.2118/12579-PA

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to J. D. Jansen.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Essen, G.M., Kahrobaei, S., van Oeveren, H. et al. Determination of lower and upper bounds of predicted production from history-matched models. Comput Geosci 20, 1061–1073 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Computer-assisted history matching
  • Uncertainty
  • Hierarchical optimization
  • Multi-objective optimization