Advertisement

Computational Geosciences

, Volume 20, Issue 5, pp 1061–1073 | Cite as

Determination of lower and upper bounds of predicted production from history-matched models

  • G. M. van Essen
  • S. Kahrobaei
  • H. van Oeveren
  • P. M. J. Van den Hof
  • J. D. Jansen
Open Access
Original Paper

Abstract

We present a method to determine lower and upper bounds to the predicted production or any other economic objective from history-matched reservoir models. The method consists of two steps: 1) performing a traditional computer-assisted history match of a reservoir model with the objective to minimize the mismatch between predicted and observed production data through adjusting the grid block permeability values of the model. 2) performing two optimization exercises to minimize and maximize an economic objective over the remaining field life, for a fixed production strategy, by manipulating the same grid block permeabilities, however without significantly changing the mismatch obtained under step 1. This is accomplished through a hierarchical optimization procedure that limits the solution space of a secondary optimization problem to the (approximate) null space of the primary optimization problem. We applied this procedure to two different reservoir models. We performed a history match based on synthetic data, starting from a uniform prior and using a gradient-based minimization procedure. After history matching, minimization and maximization of the net present value (NPV), using a fixed control strategy, were executed as secondary optimization problems by changing the model parameters while staying close to the null space of the primary optimization problem. In other words, we optimized the secondary objective functions, while requiring that optimality of the primary objective (a good history match) was preserved. This method therefore provides a way to quantify the economic consequences of the well-known problem that history matching is a strongly ill-posed problem. We also investigated how this method can be used as a means to assess the cost-effectiveness of acquiring different data types to reduce the uncertainty in the expected NPV.

Keywords

Computer-assisted history matching Uncertainty Hierarchical optimization Multi-objective optimization 

References

  1. 1.
    Aanonsen, S.I., Nævdal, G., Oliver, D.S., Reynolds, A.C., Vallès, B.: The ensemble Kalman filter in reservoir engineering—a review. SPE J. 14(3), 393–412 (2009). doi: 10.2118/117274-PA CrossRefGoogle Scholar
  2. 2.
    Bratvold, R.B., Bickel, J.E., Lohne, H.P.: Value of information in the oil and gas industry: past, present, and future. SPE J. 12(4), 630–638 (2009). doi: 10.2118/110378-PA Google Scholar
  3. 3.
    Chen, Y., Oliver, D.S., Zhang, D.: Efficient ensemble-based closed-loop production optimization. SPE J. 14(4), 634–645 (2009). doi: 10.2118/112873-PA CrossRefGoogle Scholar
  4. 4.
    Chen, C., Li, G., Reynolds, A., et al.: Robust constrained optimization of short-and long-term net present value for closed-loop reservoir management. SPE J. 17(03), 849–864 (2012). doi: 10.2118/141314--PA CrossRefGoogle Scholar
  5. 5.
    den Dekker, A.J., Bombois, X., Van den Hof, P.M.J.: Finite sample confidence regions for parameters in prediction error identification using output error models. Proc. 17th IFAC World Congress, Seoul Korea, 6-11-July (2008)Google Scholar
  6. 6.
    Eidsvik, J., Mukerji, T., Bhattacharjya, D.: Value of Information in the Earth Sciences. Cambridge University Press, Cambridge (2015)CrossRefGoogle Scholar
  7. 7.
    Evensen, G.: Data Assimilation: the Ensemble Kalman Filter. Springer, Berlin (2009)CrossRefGoogle Scholar
  8. 8.
    Fonseca, R.M., Leeuwenburgh, O., Van den Hof, P.M.J., Jansen, J.D.: Ensemble-based hierarchical multi-objective production optimization of smart wells. Comput. Geosci. 18(3-4), 449–461 (2014). doi: 10.1007/s10596-013-9399-2 CrossRefGoogle Scholar
  9. 9.
    Fonseca, R.M., Leeuwenburgh, O., Della Rossa, E., Van den Hof, P.M.J., Jansen, J.D.: Ensemble-based multi-objective optimization of on-off control devices under geological uncertainty. SPE Reserv. Eval. Eng. 18(4), 1094–6470 (2015). doi: 10.2118/173268-PA
  10. 10.
    Haimes, Y.Y., Li, D.: Hierarchical multiobjective analysis for large-scale systems: review and current status. Automatica 24(1), 53–69 (1988). doi: 10.1016/0005-1098(88)90007-6 CrossRefGoogle Scholar
  11. 11.
    Jansen, J.D.: Adjoint-based optimization of multiphase flow through porous media—a review. Comput. Fluids 46(1), 40–51 (2011). doi: 10.1016/j.compfluid.2010.09.039 CrossRefGoogle Scholar
  12. 12.
    Kraaijevanger, J.F.B.M., Egberts, P.J.P., Valstar, J.R., Buurman, H.W.: Optimal Waterflood Design Using the Adjoint Method. Paper 105764 Presented at the SPE Reservoir Simulation Symposium, Houston Texas U.S.A. February (2007)Google Scholar
  13. 13.
    Liu, X., Reynolds, A.C.: Gradient-based multiobjective optimization with applications to waterflooding optimization. Comput. Geosci. 20(3), 677–693 (2014). doi: 10.1007/s10596-015-9523-6
  14. 14.
    Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26(6), 369–395 (2004). doi: 10.1007/s00158-003-0368-6 CrossRefGoogle Scholar
  15. 15.
    Oliver, D.S., Reynolds, A.C., Liu, N.: Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  16. 16.
    Peters, E., Chen, Y., Leeuwenburgh, O., Oliver, DS.: Extended Brugge benchmark case for history matching and water flooding optimization. Comput. Geosci. 50, 16–24 (2013). doi: 10.1016/j.cageo.2012.07.018 CrossRefGoogle Scholar
  17. 17.
    Peters, L., Arts, R., Brouwer, G., Geel, C., Cullick, S., Lorentzen, R.J., Chen, Y., Dunlop, N., Vossepoel, F.C., Xu, R.: Results of the Brugge benchmark study for flooding optimization and history matching. SPE Reserv. Eval. Eng. 13(3), 391–405 (2010). doi: 10.2118/119094-PA CrossRefGoogle Scholar
  18. 18.
    Quinn, S.L., Harris, T.J., Bacon, D.W.: Accounting for uncertainty in control-relevant statistics. J. Process. Control. 15(6), 675–690 (2005). doi: 10.1016/j.jprocont.2005.01.002 CrossRefGoogle Scholar
  19. 19.
    Spall, J.C.: Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE Trans. Aerosp. Electron. Syst. 34(3), 817–823 (1998). doi: 10.1109/7.705889 CrossRefGoogle Scholar
  20. 20.
    Tavassoli, Z., Carter, J.N., King, P.R.: Errors in history matching. SPE J. 9(3), 352–361 (2004). doi: 10.2118/86883-pa CrossRefGoogle Scholar
  21. 21.
    van Essen, G.M., Zandvliet, M.J., Van den Hof, P.M.J., Bosgra, O.H., J.d., J.: Robust waterflooding optimization of multiple geological scenarios. SPE J. 14(1), 202–210 (2009). doi: 10.2118/102913-PA CrossRefGoogle Scholar
  22. 22.
    van Essen G.M., Jansen, J.D., Van den Hof, P.M.J.: Determination of lower and upper bounds of predicted production from history-matched models. Proc. 12th European Conference on Mathematics in Oil Recovery (ECMOR XII), Oxford, UK, 6-9 September (2010)Google Scholar
  23. 23.
    van Essen, G.M., Van den Hof, P.M.J., J.d., J.: Hierarchical long-term and short-term production optimization. SPE J. 16(1), 191–199 (2011). doi: 10.2118/124332-PA CrossRefGoogle Scholar
  24. 24.
    Watson, A.T., Gavalas, G.R., Seinfeld, J.H.: Identifiability of estimates of two-phase reservoir properties in history matching. SPE J. 24(6), 697–706 (1984). doi: 10.2118/12579-PA CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • G. M. van Essen
    • 2
  • S. Kahrobaei
    • 1
  • H. van Oeveren
    • 1
  • P. M. J. Van den Hof
    • 3
  • J. D. Jansen
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands
  2. 2.Shell Global Solutions International B.V.RijswijkThe Netherlands
  3. 3.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations