Advertisement

Computational Geosciences

, Volume 20, Issue 1, pp 115–131 | Cite as

Sensitivity of HF radar-derived surface current self-organizing maps to various processing procedures and mesoscale wind forcing

  • Ivica VilibićEmail author
  • Hrvoje Kalinić
  • Hrvoje Mihanović
  • Simone Cosoli
  • Martina Tudor
  • Nedjeljka žagar
  • Blaž Jesenko
ORIGINAL PAPER

Abstract

We performed a number of sensitivity experiments by applying a mapping technique, self-organizing maps (SOM) method, to the surface current data measured by high-frequency (HF) radars in the northern Adriatic and surface winds modelled by two state-of-the-art mesoscale meteorological models, the Aladin (Aire Limitée Adaptation Dynamique Développement InterNational) and the Weather and Research Forecasting models. Surface current data used for the SOM training were collected during a period in which radar coverage was the highest: between February and November 2008. Different pre-processing techniques, such as removal of tides and low-pass filtering, were applied to the data in order to test the sensitivity of characteristic patterns and the connectivity between different SOM solutions. Topographic error did not exceed 15 %, indicating the applicability of the SOM method to the data. The largest difference has been obtained when comparing SOM patterns originating from unprocessed and low-pass filtered data. Introduction of modelled winds in joint SOM analyses stabilized the solutions, while sensitivity to wind forcing coming from the two different meteorological models was found to be small. Such a low sensitivity is considered to be favourable for creation of an operational ocean forecasting system based on neural networks, HF radar measurements and numerical weather prediction mesoscale models.

Keywords

Self-organizing maps Ocean surface currents Mesoscale meteorological models Adriatic Sea 

Mathematics Subject Classification (2010)

68T05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kohonen, T.: Self-organized information of topologically correct features maps. Biol. Cybern. 43, 59–69 (1982)CrossRefGoogle Scholar
  2. 2.
    Kohonen, T.: : Self-Organizing Maps, Springer Series Information Science, 3rd, vol. 30, p 501. Springer, New York (2001)Google Scholar
  3. 3.
    Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Trans. Neural Netw. 11, 586–600 (2000)CrossRefGoogle Scholar
  4. 4.
    Fritzke, B.: Growing cell structures—a self-organizing network for unsupervised and supervised learning. Neural Netw. 7, 1441–1460 (1994)CrossRefGoogle Scholar
  5. 5.
    Kohonen, T., Oja, E., Simula, O., Visa, A., Kangas, J.: Engineering applications of the self-organizing map. IEEE Proc. 84, 1358–1384 (1996)CrossRefGoogle Scholar
  6. 6.
    Herrero, J., Valencia, A., Dopazo, J.: A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17, 126–136 (2001)CrossRefGoogle Scholar
  7. 7.
    Xu, R, Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16, 645–678 (2005)CrossRefGoogle Scholar
  8. 8.
    Kolehmainen, M., Martikainen, H., Ruuskanen, J.: Neural networks and periodic components used in air quality forecasting. Atmos. Environ. 35, 815–825 (2001)CrossRefGoogle Scholar
  9. 9.
    Fan, S., Chen, L.N.: Short-term load forecasting based on an adaptive hybrid method. IEEE Trans. Power Syst. 21, 392–401 (2006)CrossRefGoogle Scholar
  10. 10.
    Cavazos, T.: Using self-organizing maps to investigate extreme climate events: an application to wintertime precipitation in the Balkans. J. Clim. 13, 1718–1732 (2000)CrossRefGoogle Scholar
  11. 11.
    Hewitson, B.C., Crane, R.G.: Self-organizing maps: applications to synoptic climatology. Clim. Res. 22, 13–26 (2002)CrossRefGoogle Scholar
  12. 12.
    Huth, R., Beck, C., Philipp, A., Demuzere, M., Ustrnul, Z., Cahynova, M., Kysely, J., Tveito, O.E.: Classifications of atmospheric circulation patterns recent advances and applications. Trends Dir. Clim. Res. 1146, 105–152 (2008)Google Scholar
  13. 13.
    Richardson, A.J., Risien, C., Shillington, F.A.: Using self-organizing maps to identify patterns in satellite imagery. Prog. Oceanogr. 59, 223–239 (2003)CrossRefGoogle Scholar
  14. 14.
    Mau, J.C., Wang, D.P., Ullman, D.S., Codiga, D.L.: Characterizing Long Island Sound outflows from HF radar using self-organizing maps. Estuar. Coast. Shelf Sci. 74, 155–165 (2007)CrossRefGoogle Scholar
  15. 15.
    Richardson, A.J., Pfaff, M.C., Field, J.G., Silulwane, N.F., Shillington, F.A.: Identifying characteristic chlorophyll a profiles in the coastal domain using an artificial neural network. J. Plankton Res. 24, 1289–1303 (2002)CrossRefGoogle Scholar
  16. 16.
    Lee, Y.J., Lwiza, K.M.M.: Characteristics of bottom dissolved oxygen in Long Island Sound. New York Estuar. Coastal Shelf Sci. 76, 187–200 (2008)CrossRefGoogle Scholar
  17. 17.
    Gutierrez, J.M., Cano, R., Cofino, A.S., Sordo, C.: Analysis and downscaling multi-model seasonal forecasts in Peru using self-organizing maps. Tellus A 57, 435–447 (2005)CrossRefGoogle Scholar
  18. 18.
    Allen, J.I., Somerfield, P.J., Gilbert, F.J.: Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models. J. Mar. Syst. 64, 3–14 (2007)CrossRefGoogle Scholar
  19. 19.
    Liu, Y., Weisberg, R.H., Mooers, C.N.K.: Performance evaluation of the self-organizing map for feature extraction. J. Geophys. Res. 111, C05018 (2006). doi: 10.1029/2005JC003117 CrossRefGoogle Scholar
  20. 20.
    Liu, Y., Weisberg, R.H., Shay, L.K.: Current patterns on the West Florida shelf from joint self-organizing map analyses of HF radar and ADCP data. J. Atmos. Ocean. Technol. 24, 702–712 (2007)CrossRefGoogle Scholar
  21. 21.
    Mihanović, H., Cosoli, S., Vilibić, I., Ivanković, D., Dadić, V., Gačić, M.: Surface current patterns in the northern Adriatic extracted from high frequency radar data using self-organizing map analysis. J. Geophys. Res. 116, C08033 (2011). doi: 10.1029/2011JC007104 Google Scholar
  22. 22.
    Essen, H.H., Gurgel, K.-W., Schlick, T.: On the accuracy of current measurements by means of HF radar. IEEE J. Ocean. Eng. 25, 472–480 (2000)CrossRefGoogle Scholar
  23. 23.
    Kim, S.Y., Terrill, E.J., Cornuelle, B.D., Jones, B., Washburn, L., Moline, M.A., Paduan, J.D., Garfield, N., Largier, J.L., Crawford, G., Kosro, P.M.: Mapping the U.S. West Coast surface circulation: a multiyear analysis of high-frequency radar observations. J. Geophys. Res. 116, C03011 (2011). doi: 10.1029/2010JC006669 Google Scholar
  24. 24.
    Paduan, J.D., Washburn, L.: High-frequency radar observations of ocean surface currents. Ann. Rev. Mar. Sci. 5, 115–136 (2013)CrossRefGoogle Scholar
  25. 25.
    Kirincich, A.R., Lentz, S.J., Farrar, J.T., Ganju, N.K.: The spatial structure of tidal and mean circulation over the inner shelf south of Martha’s Vineyard, Massachusetts. J. Phys. Oceanogr. 43, 1940–1958 (2013)CrossRefGoogle Scholar
  26. 26.
    Shay, L.K., Graber, H.C., Ross, D.B., Chapman, R.D.: Mesoscale ocean surface current structure detected by high-frequency radar. J. Atmos. Ocean. Technol. 12, 881–900 (1995)CrossRefGoogle Scholar
  27. 27.
    Gough, M.K., Garfield, N., McPhee-Shaw, E.: An analysis of HF radar measured surface currents to determine tidal, wind-forced, and seasonal circulation in the Gulf of the Farallones, California, United States. J. Geophys. Res. 115, C04019 (2010). doi: 10.1029/2009JC005644 CrossRefGoogle Scholar
  28. 28.
    Gurgel, K.W., Dzvonkovskaya, A., Pohlmann, T., Schlick, T., Gill, E.: Simulation and detection of tsunami signatures in ocean surface currents measured by HF radar. Ocean Dyn. 61, 1495–1507 (2011)CrossRefGoogle Scholar
  29. 29.
    Kovačević, V., Gačić, M., Mazzoldi, A., Dallaporta, G., Gaspari, A.: Sea-surface currents measured by coastal HF radar offshore Ancona. Boll. Geofis. Teor. Appl. 41, 339–355 (2000)Google Scholar
  30. 30.
    Chavanne, C., Janeković, I., Flament, P., Poulain, P.M., Kuzmić, M., Gurgel, K.W.: Tidal currents in the northwestern Adriatic: high-frequency radio observations and numerical model predictions. J. Geophys. Res. 112, C03S21 (2007). doi: 10.1029/2006JC003523 CrossRefGoogle Scholar
  31. 31.
    Cosoli, S., Mazzoldi, A., Gačić, M.: Validation of surface current measurements in the northern Adriatic Sea from high-frequency radars. J. Atmos. Ocean. Technol. 27, 908–919 (2010)CrossRefGoogle Scholar
  32. 32.
    Cosoli, S., Gačić, M., Mazzoldi, A.: Surface current variability and wind influence in the northeastern Adriatic Sea as observed from high-frequency (HF) radar measurements. Cont. Shelf Res. 33, 1–13 (2012)CrossRefGoogle Scholar
  33. 33.
    Cosoli, S., Ličer, M., Vodopivec, M., Malačič, V.: Surface circulation in the Gulf of Trieste (northern Adriatic Sea) from radar, model, and ADCP comparisons. J. Geophys. Res. Oceans 118, 6183–6200 (2013)CrossRefGoogle Scholar
  34. 34.
    Orlić, M., Dadić, V., Grbec, B., Leder, N., Marki, A., Matić, F., Mihanović, H., Beg Paklar, G., Pasarić, M., Pasarić, Z., Vilibić, I.: Wintertime buoyancy forcing, changing seawater properties and two different circulation systems produced in the Adriatic. J. Geophys. Res. 111, C03S07 (2006). doi: 10.1029/2005JC003271 Google Scholar
  35. 35.
    Campanelli, A., Grilli, F., Paschini, E., Marini, M.: The influence of an exceptional Po River flood on the physical and chemical oceanographic properties of the Adriatic Sea. Dyn. Atmos. Oceans 52, 284–297 (2011)CrossRefGoogle Scholar
  36. 36.
    Mihanović, H., Vilibić, I., Carniel, S., Tudor, M., Russo, A., Bergamasco, A., Bubić, N., Ljubešić, Z., Viličić, D., Boldrin, A., Malačič, V., Celio, M., Comici, C., Raicich, F.: Exceptional dense water formation on the Adriatic shelf in the winter of 2012. Ocean Sci. 9, 561–572 (2013)CrossRefGoogle Scholar
  37. 37.
    Grisogono, B., Belušić, D.: A review of recent advances in understanding the meso and microscale properties of the severe Bora wind. Tellus A 61, 1–16 (2009)CrossRefGoogle Scholar
  38. 38.
    Janeković, I., Kuzmić, M.: Numerical simulation of the Adriatic Sea principal tidal constituents. Ann. Geophys. 23, 3207–3218 (2005)CrossRefGoogle Scholar
  39. 39.
    Prtenjak, M.T., Grisogono, B.: Sea/land breeze climatological characteristics along the northern Croatian Adriatic coast. Theor. Appl. Climatol. 90, 201–215 (2007)CrossRefGoogle Scholar
  40. 40.
    Allard, R., Rogers, E., Martin, P., Jensen, T., Chu, P., Campbell, T., Dykes, J., Smith, T., Choi, J., Gravois, U.: The US Navy coupled ocean-wave prediction system. Oceanography 27, 92–103 (2014)CrossRefGoogle Scholar
  41. 41.
    Barth, A., Alvera-Azcarate, A., Gurgel, K.W., Staneva, J., Port, A., Beckers, J.M., Stanev, E.V.: Ensemble perturbation smoother for optimizing tidal boundary conditions by assimilation of high-frequency radar surface currents—application to the German Bight. Ocean Sci. 6, 161–178 (2010)CrossRefGoogle Scholar
  42. 42.
    Wahle, K., Stanev, E.V.: Consistency and complementarity of different coastal ocean observations: a neural network-based analysis for the German Bight. Geophys. Res. Lett. 38, L10603 (2013). doi: 10.1029/2011GL047070 Google Scholar
  43. 43.
    Thomson, R.E., Emery, W.J. Data Analysis Methods in Physical Oceanography, 3rd. Elsevier Science, Amsterdam, London, New York (2014)Google Scholar
  44. 44.
    Gurgel, K.W., Essen, H.H., Kingsley, S.P.: HF radars: physical limitations and recent developments. Coast. Eng. 37, 201–218 (1999)CrossRefGoogle Scholar
  45. 45.
    Crombie, D.D.: Doppler spectrum of sea echo at 13.56 Mc/s. Nature 175, 681–682 (1955)CrossRefGoogle Scholar
  46. 46.
    Kohut, J.T., Glenn, S.M.: Improving HF radar surface current measurements with measured antenna beam patterns. J. Atmos. Ocean. Technol. 20, 1303–1316 (2003)CrossRefGoogle Scholar
  47. 47.
    Cosoli, S., Bolzon, G., Mazzoldi, A.: A real-time and offline quality control methodology for SeaSonde high-frequency radar currents. J. Atmos. Ocean. Technol. 29, 1313–1328 (2012)CrossRefGoogle Scholar
  48. 48.
    Lipa, B.J., Barrick, D.: Least-squares methods for the extraction of surface currents from Codar crossed-loop data – application at ARSLOE. IEEE J. Ocean. Eng. 8, 226–253 (1983)CrossRefGoogle Scholar
  49. 49.
    Barrick, D.E., Lipa, B.J.: An evaluation of least-squares and closed-form dual-angle methods for CODAR surface-current applications. IEEE J. Ocean. Eng. 11, 322–326 (1986)CrossRefGoogle Scholar
  50. 50.
    Chapman, R.D., Graber, H.C.: Validation of HF radar measurements. Oceanography 10(2), 76–79 (1997)CrossRefGoogle Scholar
  51. 51.
    Kovačević, V., Gačić, M., Mancero Mosquera, I., Mazzoldi, A., Marinetti, S.: HF radar observations in the northern Adriatic: surface current field in front of the Venetian Lagoon. J. Mar. Syst. 51, 95–122 (2004)CrossRefGoogle Scholar
  52. 52.
    de Paolo, T., Terrill, E.: Skill assessment of resolving ocean surface current structure using compact-antenna-style HF radar and the MUSIC direction-finding algorithm. J. Atmos. Ocean. Technol. 24, 1277–1300 (2007)CrossRefGoogle Scholar
  53. 53.
    Aladin International Team: The ALADIN project: mesoscale modelling seen as a basic tool for weather forecasting and atmospheric research. WMO Bull. 46, 317–324 (1997)Google Scholar
  54. 54.
    Tudor, M., Ivatek-Šahdan, S., Stanešić, A., Horvath, K., Bajić, A.: Forecasting weather in Croatia using ALADIN numerical weather prediction model. In: Zhang, Y., Ray, P. (eds.) Climate Change and Regional/Local Responses, pp 59–88. InTech, Rijeka (2013)Google Scholar
  55. 55.
    Ivatek-Šahdan, S., Tudor, M.: Use of high-resolution dynamical adaptation in operational suite and research impact studies. Meteorol. Z. 13(2), 1–10 (2004)Google Scholar
  56. 56.
    Tudor, M., Ivatek-Šahdan, S.: The case study of bura of 1st and 3rd February 2007. Meteorol. Z. 19, 453–466 (2012)CrossRefGoogle Scholar
  57. 57.
    Geleyn, J.-F.: Interpolation of wind, temperature and humidity values from model levels to the height of measurement. Tellus 40A, 347–351 (1988)CrossRefGoogle Scholar
  58. 58.
    Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W., Powers, J.G.: A description of the advanced research WRF Version 3, NCAR Technical Note NCAR/TN–475 + STR (2008)Google Scholar
  59. 59.
    Davies, H.C.: A lateral boundary formulation for multi-level prediction models. Q. J. Royal Meteorol. Soc. 102, 405–418 (1976)Google Scholar
  60. 60.
    Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 102(D14), 16663–16682 (1997)CrossRefGoogle Scholar
  61. 61.
    Dudhia, J.: A multi-layer soil temperature model for MM5, pp 49–50. The Sixth PSU/NCAR MM5 Users’ Workshop, Boulder, Colorado (1996)Google Scholar
  62. 62.
    Hong, S.Y., Dudhia, J., Chen, S.H.: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather Rev. 132, 103–120 (2004)CrossRefGoogle Scholar
  63. 63.
    Dudhia, J.: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 46, 3077–3107 (1989)CrossRefGoogle Scholar
  64. 64.
    Hong, S.Y., Noh, Y., Dudhia, J.: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 134, 2318–2341 (2006)CrossRefGoogle Scholar
  65. 65.
    žagar, N., Honzak, L., žabkar, R., Skok, G., Rakovec, J., Ceglar, A.: Uncertainties in a regional climate model in the mid-latitudes due to the nesting technique and the domain size. J. Geophys. Res. 118, 6189–6199 (2013)Google Scholar
  66. 66.
    Ceglar, A., Honzak, L., žagar, N., Skok, G., žabkar, R., Rakovec, J.: Evaluation of precipitation in the ENSEMBLES regional climate models over the complex orography of Slovenia. Int. J. Clim. 35, 2574–2591 (2014). doi: 10.1002/joc.4158 CrossRefGoogle Scholar
  67. 67.
    Kriesel, D.: A brief introduction to neural networks, available at http://www.dkriesel.com, (2007). Accessed 3 December 2014
  68. 68.
    Liu, Y., Weisberg, R.H.: A review of self-organizing map applications in meteorology and oceanography. In: Mwasiagi, J.I. (ed.) Self-Organizing Maps-Applications and Novel Algorithm Design, pp 253–272. InTech, Rijeka (2011)Google Scholar
  69. 69.
    Kaski, S., Kangas, J., Kohonen, T.: Bibliography of self-organizing map (SOM) papers: 1981-1997. Neural Comput. Surv. 1, 102–350 (1998)Google Scholar
  70. 70.
    Oja, M., Kaski, S., Kohonen, T.: Bibliography of self-organizing map (SOM) papers: 1998–2001 addendum. Neural Comput. Surv. 3, 1–156 (2003)Google Scholar
  71. 71.
    Hewitson, B.C., Crane, R.G.: Neural Nets: Applications in Geography. Springer, New York (1994)CrossRefGoogle Scholar
  72. 72.
    Schuenemann, K.C., Cassano, J.J., Finnis, J.: Forcing of precipitation over Greenland: synoptic climatology for 1961-99. J. Hydrometeorol. 10, 60–78 (2009)CrossRefGoogle Scholar
  73. 73.
    Tambouratzis, T., Tambouratzis, G.: Meteorological data analysis using self-organizing maps. Int. J. Intell. Syst. 23, 735–759 (2008)CrossRefGoogle Scholar
  74. 74.
    Yip, Z.K., Yau, M.K.: Application of artificial neural networks on North Atlantic tropical cyclogenesis potential index in climate change. J. Atmos. Ocean. Technol. 29, 1202–1220 (2012)CrossRefGoogle Scholar
  75. 75.
    Iskandar, I.: Seasonal and interannual patterns of sea surface temperature in Banda Sea as revealed by self-organizing map. Cont. Shelf Res. 30, 1136–1148 (2010)CrossRefGoogle Scholar
  76. 76.
    Hong, Y., Chiang, Y.M., Liu, Y., Hsu, K.L., Sorooshian, S.: Satellite-based precipitation estimation using watershed segmentation and growing hierarchical self-organizing map. Int. J. Remote Sens. 27, 5165–5184 (2006)CrossRefGoogle Scholar
  77. 77.
    Liu, Y., Weisberg, R.H.: Patterns of ocean current variability on the West Florida Shelf using the self-organizing map. J. Geophys. Res. 110, C06003 (2005). doi: 10.1029/2004JC002786 Google Scholar
  78. 78.
    Kropp, J., Klenke, T.: Phenomenological pattern recognition in the dynamical structures of tidal sediments from the German Wadden Sea. Ecol. Modell. 103, 151–170 (1997)CrossRefGoogle Scholar
  79. 79.
    Bandelj, V., Socal, G., Park, Y.S., Lek, S., Coppola, J., Camatti, E., Capuzzo, E., Milani, L., Solidoro, C.: Analysis of multitrophic plankton assemblages in the Lagoon of Venice. Mar. Ecol. Prog. Ser. 368, 23–40 (2008)CrossRefGoogle Scholar
  80. 80.
    Solidoro, C., Bastianini, M., Bandelj, V., Codermatz, R., Cossarini, G., Melaku Canu, D., Ravagnan, E., Salon, S., Trevisani, S.: Current state, scales of variability & trends of biogeochemical properties in the northern Adriatic Sea. J. Geophys. Res. 114, C07S91 (2009). doi: 10.1029/2008JC004838 CrossRefGoogle Scholar
  81. 81.
    Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: SOM Toolbox for Matlab 5, Technical Report A57, FIN-02015 HUT, p 59. Helsinki University of Technology, Helsinki (2000)Google Scholar
  82. 82.
    Malačič, V., Viezzoli, D., Cushman-Roisin, B.: Tidal dynamics in the northern Adriatic Sea. J. Geophys. Res. 105, 26265–26280 (2000)CrossRefGoogle Scholar
  83. 83.
    Cushman-Roisin, B., Naimie, C.E.: A 3D finite-element model of the Adriatic tides. J. Mar. Syst. 37, 279–297 (2002)CrossRefGoogle Scholar
  84. 84.
    Pawlowicz, R., Beardsley, B., Lentz, S.: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci. 28, 929–937 (2002)CrossRefGoogle Scholar
  85. 85.
    Raicich, F., Orlić, M., Vilibić, I., Malačič, V.: A case study of the Adriatic seiches (December 1997). Il Nuovo Cimento C 22, 715–726 (1999)Google Scholar
  86. 86.
    Krajcar, B., Orlić, M.: Seasonal variability of inertial oscillations in the northern Adriatic. Cont. Shelf Res. 15, 1221–1233 (1995)CrossRefGoogle Scholar
  87. 87.
    Whiteman, C.D., Bian, X.D.: Solar semidiurnal tides in the troposphere: detection by radar profilers. Bull. Am. Meteorol. Soc. 77, 529–542 (1996)CrossRefGoogle Scholar
  88. 88.
    Zhang, Z., Schwartz, S., Wagner, L., Miller, W.: A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203–214 (2000)CrossRefGoogle Scholar
  89. 89.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press and McGraw-Hill (2009)Google Scholar
  90. 90.
    Kundu, P.K.: Ekman veering observed near the ocean bottom. J. Phys. Oceanogr. 6, 238–242 (1976)CrossRefGoogle Scholar
  91. 91.
    Pasarić, Z., Belušić, D., Klaić, Z.B.: Orographic influences on the Adriatic sirocco wind. Ann. Geophys. 25, 1263–1267 (2007)CrossRefGoogle Scholar
  92. 92.
    Cavaleri, L., Bertotti, L., Tescaro, N.: The modelled wind climatology of the Adriatic Sea. Theor. Appl. Climatol. 56, 231–254 (1997)CrossRefGoogle Scholar
  93. 93.
    Malačič, V., Celio, M., Čermelj, B., Bussani, A., Comici, C.: Interannual evolution of seasonal thermohaline properties in the Gulf of Trieste (northern Adriatic) 1991-2003. J. Geophys. Res. 111, C08009 (2006). doi: 10.1029/2005JC003267 Google Scholar
  94. 94.
    Vilibić, I., Mihanović, H., Šepić, J., Matijević, S.: Using self-organising maps to investigate long-term changes in deep Adriatic water patterns. Cont. Shelf Res. 31, 695–711 (2011)CrossRefGoogle Scholar
  95. 95.
    Pölzlbauer, G.: Survey and comparison of quality measures for self-organizing maps. In: Paralič, J, Pölzlbauer, G, Rauber, A (eds.) Proceedings of the Fifth Workshop on Data Analysis (WDA’04), pp 67–82. Elfa Academic Press, Vysoké Tatry, SlovakiaGoogle Scholar
  96. 96.
    Jeffries, M.A., Lee, C.M.: A climatology of the northern Adriatic Sea’s response to bora and river forcing. J. Geophys. Res. 112, C03S02 (2007). doi: 10.1029/2006JC003664 CrossRefGoogle Scholar
  97. 97.
    Lee, T.L., Jeng, D.S.: Application of artificial neural networks in tide-forecasting. Ocean Eng. 29, 1003–1022 (2002)CrossRefGoogle Scholar
  98. 98.
    Makarynskyy, O.: Improving wave predictions with artificial neural networks. Ocean Eng. 31, 704–729 (2004)CrossRefGoogle Scholar
  99. 99.
    Cowles, G.W.: Parallelization of the FVCOM coastal ocean model. Int. J. High Perform. Comput. Appl. 22, 177–193 (2008)CrossRefGoogle Scholar
  100. 100.
    Haidvogel, D.B., Beckmann, A.: Numerical Ocean Circulation Modeling. Imperial College Press, London (1999)Google Scholar
  101. 101.
    Hall, D.: Rejuvenation, diversification and imagery: sustainability conflicts for tourism policy in the Eastern Adriatic. J. Sustain. Tour. 11, 280–294 (2009)CrossRefGoogle Scholar
  102. 102.
    Ferraro, G., Bernardini, A., David, M., Meyer-Roux, S., Muellenhoff, O., Perkovic, M., Tarchi, D., Topouzelis, K.: Towards an operational use of space imagery for oil pollution monitoring in the Mediterranean basin: a demonstration in the Adriatic Sea. Mar. Pollut. Bull. 53, 403–422 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ivica Vilibić
    • 1
    Email author
  • Hrvoje Kalinić
    • 1
  • Hrvoje Mihanović
    • 1
  • Simone Cosoli
    • 2
    • 3
  • Martina Tudor
    • 4
  • Nedjeljka žagar
    • 5
  • Blaž Jesenko
    • 5
  1. 1.Institute of Oceanography and FisheriesSplitCroatia
  2. 2.Istituto Nazionale di Oceanografia e di Geofisica SperimentaleSgonicoItaly
  3. 3.School of Civil, Environmental and Mining EngineeringUniversity of Western AustraliaCrawleyAustralia
  4. 4.Meteorological and Hydrological ServiceZagrebCroatia
  5. 5.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations