Skip to main content
Log in

Towards a hierarchical parametrization to address prior uncertainty in ensemble-based data assimilation

  • Published:
Computational Geosciences Aims and scope Submit manuscript


Ensemble-based methods are becoming popular assisted history matching techniques with a growing number of field applications. These methods use an ensemble of model realizations, typically constructed by means of geostatistics, to represent the prior uncertainty. The performance of the history matching is very dependent on the quality of the initial ensemble. However, there is a significant level of uncertainty in the parameters used to define the geostatistical model. From a Bayesian viewpoint, the uncertainty in the geostatistical modeling can be represented by a hyper-prior in a hierarchical formulation. This paper presents the first steps towards a general parametrization to address the problem of uncertainty in the prior modeling. The proposed parametrization is inspired in Gaussian mixtures, where the uncertainty in the prior mean and prior covariance is accounted by defining weights for combining multiple Gaussian ensembles, which are estimated during the data assimilation. The parametrization was successfully tested in a simple reservoir problem where the orientation of the major anisotropic direction of the permeability field was unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Aanonsen, S.I., Nævdal, G., Oliver, D.S., Reynolds, A.C., Vallès, B.: Review of ensemble Kalman filter in petroleum engineering. SPE J. 14(3), 393–412 (2009). doi:10.2118/117274-PA

    Article  Google Scholar 

  2. Anderson, J.L.: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter. Physica D: Nonlinear Phenomena 230(1–2), 99–111 (2007). doi:10.1016/j.physd.2006.02.011

    Article  Google Scholar 

  3. Bengtsson, T., Snyder, C., Nychka, D.: Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res. 108(D24), ARTN 8775 (2003). doi:10.1029/2002JD002900

  4. Bianco, A., Cominelli, A., Dovera, L., Nævdal, G., Vallès, B.: History matching and production forecast uncertainty by means of the ensemble Kalman filter: A real field application. In: Proceedings of the EAGE/EUROPEC Conference and Exhibition. London, number SPE 107161 (2007). doi:10.2118/107161-MS

  5. Chen, Y., Oliver, D.S.: Ensemble-based closed-loop optimization applied to Brugge field. SPE Reserv. Eval. Eng. 13(1), 56–71 (2010). doi:10.2118/118926-PA

    Article  Google Scholar 

  6. Chen, Y., Oliver, D.S.: Ensemble randomized maximum likelihood method as an iterative ensemble smoother. Math. Geosci. 44(1), 1–26 (2012). doi:10.1007/s11004-011-9376-z

    Article  Google Scholar 

  7. Chen, Y., Dean, S.O.: Levenberg-Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification. Comput. Geosci. 17, 689–703 (2013). doi:10.1007/s10596-013-9351-5

    Article  Google Scholar 

  8. Chen, Y., Oliver, D.S.: History matching of the Norne full-field model with an iterative ensemble smoother. SPE Reserv. Eval. Eng. 17(2) (2014). doi:10.2118/164902-PA

  9. Cominelli, A., Dovera, L., Vimercati, S., Nævdal, G.: Benchmark study of ensemble Kalman filter methodology: History matching and uncertainty quantification for a deep-water oil reservoir. In: Proceedings of the International Petroleum Technology Conference. Doha, number IPTC 13748 (2009). doi:10.2523/13748-MS

  10. Coutinho, E.J., Emerick, A.A., Li, G., Reynolds, A.C.: Conditioning multi-layered gelogic models to well test and production logging data using the ensemble Kalman filter. In: Proceedings of the SPE Annual Technical Conference and Exhibition. Florence, number SPE 134542 (2010). doi:10.2118/134542-MS

  11. Dovera, L., Rossa, E.D.: Multimodal ensemble Kalman filtering using Gaussian mixture models. Comput. Geosci. 15(2), 307–323 (2011). doi:10.1007/s10596-010-9205-3

    Article  Google Scholar 

  12. Elsheikha, A.H., Demyanov, V., Tavakoli, R., Christie, M.A., Wheeler, M.F.: Calibration of channelized subsurface flow models using nested sampling and soft probabilities. Adv. Water Res. 75, 14–30 (2015). doi:10.1016/j.advwatres.2014.10.006

    Article  Google Scholar 

  13. Emerick, A.A.: Analysis of the performance of ensemble-based assimilation of production and seismic data. Submited to Journal of Petroleum Science and Engineering (2015)

  14. Emerick, A.A., Reynolds, A.C.: History matching a field case using the ensemble Kalman filter with covariance localization. SPE Reserv. Eval. Eng. 14(4), 423–432 (2011). doi:10.2118/141216-PA

    Article  Google Scholar 

  15. Emerick, A.A., Reynolds, A.C.: Investigation on the sampling performance of ensemble-based methods with a simple reservoir model. Comput. Geosci. 17, 325–350 (2013). doi:10.1007/s10596-012-9333-z

    Article  Google Scholar 

  16. Emerick, A.A., Reynolds, A.C.: Ensemble smoother with multiple data assimilation. Comput. Geosci. 55, 3–15 (2013). doi:10.1016/j.cageo.2012.03.011

    Article  Google Scholar 

  17. Emerick, A.A., Reynolds, A.C.: History matching of production and seismic data for a real field case using the ensemble smoother with multiple data assimilation. In: Proceedings of the SPE Reservoir Simulation Symposium, The Woodlands, number SPE 163675 (2013). doi:10.2118/163675-MS

  18. Evensen, G.: Data Assimilation: The Ensemble Kalman Filter. Springer, Berlin (2007)

    Google Scholar 

  19. Evensen, G., Hove, J., Meisingset, H.C., Reiso, E., Seim, K.S., Espelid, Ø.: Using the EnKF for assisted history matching of a North Sea reservoir model. In: Proceedings of the SPE Reservoir Simulation Symposium. Houston, number SPE 106184 (2007). doi:10.2118/106184-MS

  20. Everitt, B.S., Hand, D.J.: Finite Mixture Distributions. Springer, Netherlands (1981)

    Book  Google Scholar 

  21. Furrer, R., Bengtsson, T.: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J. Multivariate Anal. 98(2), 227–255 (2007). doi:10.1016/j.jmva.2006.08.003. ISSN 0047-259X

    Article  Google Scholar 

  22. Hanea, R., Evensen, G., Hustoft, L., Ek, T., Chitu, A., Wilschut, F.: Reservoir management under geological uncertainty using fast model update. In: Proceedings of the SPE Reservoir Simulation Symposium. Houston, number SPE 173305 (2015). doi:10.2118/173305-MS

  23. Houtekamer, P.L., Mitchell, H.L.: A sequential ensemble Kalman filter for atmospheric data assimilation. Monthly Weather Rev. 129(1), 123–137 (2001). doi:10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2

    Article  Google Scholar 

  24. Hu, L.Y.: Gradual deformation and iterative calibration of Gaussian-related stochastic models. Math. Geol. 32(1), 87–108 (2000). doi:10.1023/A:1007506918588

    Article  Google Scholar 

  25. Jafarpour, B., Tarrahi, M.: Assessing the performance of the ensemble Kalman filter for subsurface flow data integration under variogram uncertainty. Water Res. Res. 47(W05537) (2011). doi:10.1029/2010WR009090

  26. Le, D.H., Emerick, A.A., Reynolds, A.C.: An adaptive ensemble smoother with multiple data assimilation for assisted history matching. In: Proceedings of the SPE Reservoir Simulation Symposium. Houston, number SPE 173214 (2015). doi:10.2118/173214-MS

  27. Li, G., Han, M., Banerjee, R., Reynolds, A.C.: Integration of well test pressure data into heterogeneous geological reservoir models. SPE Reserv. Eval. Eng. 13(3) (2010). doi:10.2118/124055-PA

  28. Phale, H.A., Oliver, D.S.: Data assimilation using the constrained ensemble Kalman filter. SPE J. 16(2), 331–342 (2011). doi:10.2118/125101-PA

    Article  Google Scholar 

  29. Remy, N., Boucher, A., Wu, J.: Applied Geostatistics with SGeMS – A User’s Guide (2009)

  30. Reynolds, A.C., He, N., Oliver, D.S.: Reducing uncertainty in geostatistical description with well testing pressure data. In: Schatzinger, R.A., Jordan, J.F. (eds.) Reservoir Characterization–Recent Advances, pp. 149–162. American Association of Petroleum Geologists (1999)

  31. Reynolds, A.C., Zafari, M., Li, G.: Iterative forms of the ensemble Kalman filter. In: Proceedings of 10th European Conference on the Mathematics of Oil Recovery. Amsterdam (2006). doi:10.3997/2214-4609.201402496

  32. Robert, C.P.: The Bayesian Choice—From decision-theoretic foundations to computational implementation, 2nd edn. Springer (2007)

  33. Skjervheim, J.-A., van Lanen, X., Hulme, D., Røine Stenerud, V., Zachariassen, E., Liu, S., Hove, J., Evensen, G.: Integrated workflow for consistent model building from depth conversion to flow simulation—North Sea field case. In: Proceedings of the 74th EAGE Conference and Exhibition incorporating EUROPEC 2012 (2012). doi:10.3997/2214-4609.20148221

  34. Smith, K.W.: Cluster ensemble Kalman filter. Tellus A 59(5), 749–757 (2007). doi:10.1111/j.1600-0870.2007.00246.x

    Article  Google Scholar 

  35. Tjelmeland, H., Omre, H., Hegstad, B.K.: Sampling from Bayesian models in reservoir characterization. Technical Report Statistics No. 2/1994. Norwegian Institute of Technology, Trondheim, Norway (1994)

  36. Zachariassen, E., Skjervheim, J.-A., Vabø, J.G., Lunt, I., Hove, J., Evensen, G.: Integrated work flow for model update using geophysical monitoring data. In: Proceedings of the 73rd EAGE Conference & Exhibition. Vienna (2011). doi:10.3997/2214-4609.20149329

  37. Zhang, Y., Oliver, D.S.: History matching using a hierarchical stochastic model with the ensemble Kalman filter: a field case study. In: Proceedings of the SPE Reservoir Simulation Symposium. The Woodlands, number SPE 118879 (2009). doi:10.2118/118879-MS

  38. Zhang, Y., Oliver, D.S.: Improving the ensemble estimate of the Kalman gain by bootstrap sampling. Math. Geosci. 42, 327–345 (2010). doi:10.1007/s11004-010-9267-8

    Article  Google Scholar 

  39. Zhang, Y., Oliver, D.S.: History matching using the ensemble Kalman filter with multiscale parameterization: a field case study. SPE J. 16(2), 307–317 (2011). doi:10.2118/118879-PA

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alexandre Anozé Emerick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emerick, A.A. Towards a hierarchical parametrization to address prior uncertainty in ensemble-based data assimilation. Comput Geosci 20, 35–47 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: