Skip to main content
Log in

A Bayesian framework for the validation of models for subsurface flows: synthetic experiments

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We present a new Bayesian framework for the validation of models for subsurface flows. We use a compositional model to simulate CO2 storage in saline aquifers, comparing simulated saturations to observed saturations, together with a Bayesian analysis, to refine the permeability field. At the laboratory scale, we consider a core that is initially fully saturated with brine in a drainage experiment performed at aquifer conditions. Two types of data are incorporated in the framework: the porosity field in the entire core and CO2 saturation values at equally spaced core slices for several values of time. These parameters are directly measured with a computed tomography scanner. We then find permeability fields that (1) are consistent with the measured parameters and, at the same time, (2) allow one to predict future fluid flow. We combine high performance computing, Bayesian inference, and a Markov chain Monte Carlo (McMC) method for characterizing the posterior distribution of the permeability field conditioned on the available dynamic measurements (saturation values at slices). We assess the quality of our characterization procedure by Monte Carlo predictive simulations, using permeability fields sampled from the posterior distribution. In our characterization step, we solve a compositional two-phase flow model for each permeability proposal and compare the solution of the model with the measured data. To establish the feasibility of the proposed framework, we present computational experiments involving a synthetic permeability field known in detail. The experiments show that the framework captures almost all the information about the heterogeneity of the permeability field of the core. We then apply the framework to real cores, using data measured in the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abreu, E., Douglas, Jr., J., Furtado, F., Marchesin, D., Pereira, F.: Three-phase immiscible displacement in heterogeneous petroleum reservoirs. Math. Comput. Simul. 73, 2–20 (2006)

    Article  Google Scholar 

  2. Abreu, E., Douglas Jr., J., Furtado, F., Pereira, F.: Operator splitting based on physics for flow in porous media. Int. J. Comput. Sci. 2, 315–335 (2008)

    Google Scholar 

  3. Akbarabadi, M., Piri, M.: Relative permeability hysteresis and capillary trapping characteristics of supercritical c o 2/brine system: an experimental study at reservoir conditions. Adv. Water Resour. 52, 190–206 (2013)

    Article  Google Scholar 

  4. Barker, J.W., Thibeau, S.: A critical review of the use of pseudorelative permeabilities for upscaling. SPE Reserv. Eng. 12, 138–143 (1997)

    Article  Google Scholar 

  5. Bear, J.: Hydraulics of groundwater. McGraw-Hill (1979)

  6. Benson, S.M., Tomutsa, L., Silin, D., Kneafsey, T., Miljkovic, L.: Core scale and pore scale studies of carbon dioxide migration in saline formations. IEA Greenhouse Gas Program, Trondheim, Norway (2006)

    Google Scholar 

  7. Chavent, G., Roberts, J.: A unified physical presentation of mixed, mixed-hybrid finite elements and standard finite difference approximations for the determination of velocities in waterflow problems. Adv. Water Ressour. 14, 329–348 (1991)

    Article  Google Scholar 

  8. Chen, Z., Zhang, Y.: Development, analysis and numerical tests of a compositional reservoir simulator. Int. J. Numer. Anal. Model. 5, 86–100 (2008)

    Google Scholar 

  9. Christen, A., Fox, C.: MCMC using an approximation. J. Comput. Graph. Stat. 14, 795–810 (2005)

    Article  Google Scholar 

  10. Christie, M.: Upscaling for reservoir simulation. J. Pet. Technol. 48, 1004–1010 (1996)

    Article  Google Scholar 

  11. Coats, K.H.: An equation of state compositional model. Soc. Pet. Eng. J., 363–376 (1980)

  12. Cotter, S., Roberts, G., Stuart, A., White, D.: MCMC methods for functions: Modifying old algorithms to make them faster. Stat. Sci. 28, 424–446 (2013)

    Article  Google Scholar 

  13. Douglas, C., Efendiev, Y., Ewing, R., Ginting, V., Lazarov, R.: Dynamic data driven simulations in stochastic environments. Computing 77, 321–333 (2006)

    Article  Google Scholar 

  14. Douglas, C., Furtado, F., Ginting, V., Mendes, M., Pereira, F., Piri, M.: On the development of a high-performance tool for the simulation of CO2 injection into deep saline aquifers. Rocky Mount. Geol. 45, 151–161 (2010)

    Article  Google Scholar 

  15. Douglas Jr., J., Furtado, F., Pereira, F.: On the numerical simulation of waterflooding of heterogeneous petroleum reservoirs. Comput. Geosci. 1, 155–190 (1997)

    Article  Google Scholar 

  16. Duan, Z., Hu, J., Li, D., Mao, S.: Density of the CO2-H2O and CO2-H2O-NACL systems up to 647 k and 100 mpa. Energy Fuels 22, 1666–1674 (2008)

    Article  Google Scholar 

  17. Duan, Z., Sun, R.: An improved model calculating CO2 solubility in pure water and aqueous nacl solutions from 273 to 533 k and from 0 to 2000 bar. Chem. Geol. 193, 257–271 (2003)

    Article  Google Scholar 

  18. Durlofsky, L.J.: Coarse scale models of two phase flow in heterogeneous reservoirs: volume averaged equations and their relationship to the existing upscaling techniques. Comput. Geosci. 2, 73–92 (1998)

    Article  Google Scholar 

  19. Efendiev, Y., Datta-Gupta, A., Ginting, V., Ma, X., Mallick, B.: An efficient two-stage Markov chain Monte Carlo method for dynamic data integration. Water Resour. Res. 41, W12423 (2005)

    Google Scholar 

  20. Efendiev, Y., Datta-Gupta, A., Osako, I., Mallick, B.: Multiscale data integration using coarse-scale models. Adv. Water Resour. 28, 303–314 (2005)

    Article  Google Scholar 

  21. Efendiev, Y., Hou, T., Luo, W.: Preconditioning Markov chain Monte Carlo simulations using coarse-scale models. SIAM J. Sci. Comput. 28, 776–803 (2006)

    Article  Google Scholar 

  22. Elsheikh, H., Jackson, M.D., Laforce, T.C.: Bayesian reservoir history matching considering model and parameter uncertainties. Math. Geosci. 44, 515–543 (2012)

    Article  Google Scholar 

  23. Furtado, F., Glimm, J., Lindquist, W.B., Pereira, F.: Characterization of mixing length growth for flow in heterogeneous porous media (1991), Society of Petroleum Engineers Journal 21233

  24. Gamerman, D., Lopas, H.F.: Markov chain monte carlo stochastic simulation for bayesian inference, 2nd edn. Chapman & Hall/CRC (2006)

  25. Ginting, V., Pereira, F., Rahunanthan, A.: Rapid quantification of uncertainty in permeability and porosity of oil reservoirs for enabling predictive simulation. Math. Comput. Simul. 99, 139–152 (2013)

    Article  Google Scholar 

  26. Gourgouillon, D., Avelino, H.M.N.T., Fareleira, J.M.N.A., Da Ponte, M.N.: Simultaneous viscosity and density measurement of supercritical CO2-saturated peg 400. J. Supercrit. Fluids 3, 177–185 (1998)

    Article  Google Scholar 

  27. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)

    Article  Google Scholar 

  28. Kong, X., Delshad, M., Wheeler, M.F.: High resolution simulations with a compositional parallel simulator for history matching laboratory co2/brine core flood experiment. Soc. Petr. Eng. J., 163625–PA (2014)

  29. Krause, M., Krevor, S., Benson, S.M.: A procedure for the accurate determination of sub-core scale permeability distributions with error quantification. Transp. Porous Media, 565–588 (2013)

  30. Krause, M., Perrin, J.C., Benson, S.M.: Modeling permeability distributions in a sandstone core for history matching coreflood experiments. Soc. Petr. Eng. J. 126340 16, 768–777 (2011)

    Google Scholar 

  31. Kuhn, H.W., Tucker, H.C.: Nonlinear programming. In: Proceedings 2nd Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492. University of California Press, Los Angeles, CA (1961)

  32. Kuo, C.W., Perrin, J.C., Benson, S.M.: Effect of gravity, flow rate, and small scale heterogeneity on multiphase flow of CO2 and brine. presented at the spe western regional meeting, anaheim, california, 27-29 may (2010), p. 132607. Society of Petroleum Engineers Journal

  33. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160, 241–282 (2000)

    Article  Google Scholar 

  34. Leal, A.M.M.: Flash equilibrium method for CO2 and H2S storage in brine aquifers with parallel GPU implementation. Master’s Thesis (2010)

  35. Loève, M.: Probability theory. Springer, Berlin (1977)

    Book  Google Scholar 

  36. Ma, X.: History matching and uncertainty quantification using sampling method. Ph.D. Thesis (2008)

  37. Ma, X., Al-Harbi, M., Datta-Gupta, A., Efendiev, Y.: An efficient two-stage sampling method for uncertainty quantification in history matching geological models, pp. 77–87. Society of Petroleum Engineers Journal (2008)

  38. Moran, M.: Advanced Research Computing Center. https://arcc.uwyo.edu/content/home

  39. Mostaghimi, P., Blunt, M.J., Bijeljic, B.: Computations of absolute permeability on micro-CT images. Math. Geosci. 45, 103–125 (2013)

    Article  Google Scholar 

  40. Ovaysi, S., Piri, M.: Direct pore-level modeling of incompressible fluid flow in porous media. J. Comput. Phys. 229, 7456–7476 (2010)

    Article  Google Scholar 

  41. Qin, G.: Numerical solution techniques for compositional model. Ph.D. Thesis (1995)

  42. Robert, C., Casella, G.: Monte Carlo Statistical Methods. Springer, New York (2005)

    Google Scholar 

  43. Shi, J.Q., Xue, Z., Durucan, D.: History matching of c o 2 core flooding CT scan saturation profiles with porosity dependent capillary pressure. Energy Procedia 1, 3205–3211 (2009)

    Article  Google Scholar 

  44. Trangenstein, J.A., Bell, J.B.: Mathematical structure of compositional reservoir simulation. SIAM J. Sci. Stat. Comput. 10, 817–845 (1989)

    Article  Google Scholar 

  45. Trilinos. trilinos.org

  46. Wong, E.: Stochastic processes in information and dynamical systems. McGraw-Hill, New York (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarabadi, M., Borges, M., Jan, A. et al. A Bayesian framework for the validation of models for subsurface flows: synthetic experiments. Comput Geosci 19, 1231–1250 (2015). https://doi.org/10.1007/s10596-015-9538-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-015-9538-z

Keywords

Navigation