Computational Geosciences

, Volume 19, Issue 6, pp 1171–1195

Phase-field modeling of a fluid-driven fracture in a poroelastic medium

• A. Mikelić
• M. F. Wheeler
• T. Wick
ORIGINAL PAPER

Abstract

In this paper, we present a phase field model for a fluid-driven fracture in a poroelastic medium. In our previous work, the pressure was assumed given. Here, we consider a fully coupled system where the pressure field is determined simultaneously with the displacement and the phase field. To the best of our knowledge, such a model is new in the literature. The mathematical model consists of a linear elasticity system with fading elastic moduli as the crack grows, which is coupled with an elliptic variational inequality for the phase field variable and with the pressure equation containing the phase field variable in its coefficients. The convex constraint of the variational inequality assures the irreversibility and entropy compatibility of the crack formation. The phase field variational inequality contains quadratic pressure and strain terms, with coefficients depending on the phase field unknown. We establish existence of a solution to the incremental problem through convergence of a finite dimensional approximation. Furthermore, we construct the corresponding Lyapunov functional that is linked to the free energy. Computational results are provided that demonstrate the effectiveness of this approach in treating fluid-driven fracture propagation.

Keywords

Hydraulic fracturing Phase field formulation Nonlinear elliptic-parabolic system Computer simulations Poroelasticity

References

1. 1.
Adachi, J., Siebrits, E., Peirce, A., Desroches, J.: Computer simulation of hydraulic fractures. Int. J. Rock Mech. Min. Sci. 44, 739–757 (2007)
2. 2.
Bangerth, W., Heister, T., Kanschat, G.: Differential Equations Analysis Library (2012)Google Scholar
3. 3.
Biot, M.A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33, 1482 (1962)
4. 4.
Bourdin, B., Francfort, G.A., Marigo, J.-J.: The variational approach to fracture. J. Elasticity 91(1–3), 1–148 (2008)Google Scholar
5. 5.
de Borst, R., Rethoré, J., Abellan, M.A.: A numerical approach for arbitrary cracks in a fluid-saturated porous medium. Arch. Appl. Mech. 75, 595–606 (2006)
6. 6.
Calhoun, R., Lowengrub, M.: A two dimensional asymmetrical crack problem. J. Elasticity 4, 37–50 (1974)
7. 7.
Coussy, O.: Poromechanics. Wiley, Chichester (2004)Google Scholar
8. 8.
Detournay, E., Garagash, D.I.: The near-tip region of a fluid-driven fracture propagating in a permeable elastic solid. J. Fluid Mech. 494, 1–32 (2003)
9. 9.
Francfort, G.A., Marigo, J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids. 46(8), 1319–1342 (1998)
10. 10.
Ganis, B., Girault, V., Mear, M., Singh, G., Wheeler, M.F.: Modeling fractures in a poro-elastic medium. Oil & Gas Science and Technology - Rev. IFP, Energies nouvelles 69(4), 515–528 (2014)
11. 11.
Irzal, F., Remmers, J.J.C., Huyghe, J.M., de Borst, R.: A large deformation formulation for fluid flow in a progressively fracturing porous material. Comput. Methods Appl. Mech. Engrg. 256, 29–37 (2013)
12. 12.
Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83, 1273–1311 (2010)
13. 13.
Heister, T., Wheeler, M.F., Wick, T.: A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach. Comput. Methods Appl. Mech. Engrg. 290, 466–495 (2015)
14. 14.
Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13(3), 865–888 (2002)
15. 15.
Mikelić, A., Wheeler, M.F., Wick, T.: A phase-field approach to the fluid filled fracture surrounded by a poroelastic medium. ICES Report 13–15 (2013)Google Scholar
16. 16.
Mikelić, A., Wheeler, M.F., Wick, T.: A quasistatic phase field approach to pressurized fractures. Nonlinearity 28, 1371–1399 (2015)
17. 17.
Mikelić, A., Wheeler, M.F., Wick, T.: A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. SIAM Multiscale Model. Simul. 13, 367–398 (2015)
18. 18.
Secchi, S., Schrefler, B.A.: A method for 3-D hydraulic fracturing simulation. Int. J. Fract. 178, 245–258 (2012)
19. 19.
Schrefler, B.A., Secchi, St., Simoni, L.: On adaptive refinement techniques in multi-field problems including cohesive fracture. Comput. Meth. Appl. Mech. Engrg. 195, 444–461 (2006)
20. 20.
Sneddon, I.N., Lowengrub, M.: Crack problems in the classical theory of elasticity. The SIAM series in Applied Mathematics. Wiley (1969)Google Scholar
21. 21.
Tolstoy, I. (ed.): Acoustics, elasticity, and thermodynamics of porous media. Twenty-one papers by M.A. Biot. Acoustical Society of America, New York (1992)Google Scholar
22. 22.
Wheeler, M.F., Wick, T., Wollner, W.: An augmented-Lagrangian method for the phase-field approach for pressurized fractures. Comput. Methods Appl. Mech. Engrg. 271, 69–85 (2014)
23. 23.
Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tuminaro, R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An overview of the trilinos project. ACM Trans. Math. Softw. 31, 397–423 (2005)
24. 24.
Wick, T., Singh, G., Wheeler, M.F.: Fluid-Filled Fracture Propagation using a Phase-Field Approach and Coupling to a Reservoir Simulator, SPE-168597-PA in SPE Journal 2015, 19. doi: