Advertisement

Computational Geosciences

, Volume 19, Issue 5, pp 1109–1122 | Cite as

Constraint handling for gradient-based optimization of compositional reservoir flow

  • Drosos KourounisEmail author
  • Olaf Schenk
ORIGINAL PAPER

Abstract

The development of adjoint procedures for general compositional flow problems is much more challenging than for oil-water problems, due to significantly higher complexity of the underlying physics. The treatment of nondifferentiable constraints, an example of which is a maximum gas rate specification in injection or production wells, when the control variables are well-bottom-hole pressures, poses an additional major challenge. A new formal approach for handling these constraints is presented and compared against a formal treatment within the optimizer employing constraint lumping and a simpler heuristic treatment in the forward model. The three constraint-handling methods are benchmarked for three example cases of increasing complexity. Moreover, the new approach allows the optimizer to converge to optimal solutions exhibiting higher objective values, since unlike the formal lumping-based methods, where a pressure reduction suggested by the optimizer propagates through the smoothing function to all well rates, it handles constraints individually on a per well and per time step basis. The numerical examples show that the new formal constraint-handling approach allows the optimizer to converge significantly faster than formal lumping-based techniques independently of the initial guess used for the optimization.

Keywords

Adjoint formulation Gradient-based optimization Production optimization Recovery optimization Compositional reservoir simulation Discrete adjoint Continuous adjoint Automatic differentiation Nonlinear constraints General constraints 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asheim, H.: Maximization of water sweep efficiency by controlling production and injection rates. In: SPE Paper 18365 Presented at the SPE European Petroleum Conference. London (1988)Google Scholar
  2. 2.
    Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Applied Science Publishers, London (1979)Google Scholar
  3. 3.
    Bertsekas, D.P.: Nonlinear Programming. Athena Scientific (1999)Google Scholar
  4. 4.
    Brouwer, D.R., Jansen, J.D.: Dynamic optimization of water flooding with smart wells using optimal control theory. SPE J. 9(4), 391–402 (2004)CrossRefGoogle Scholar
  5. 5.
    Cao, H.: Development of techniques for general purpose simulators. Ph.D. thesis, Stanford University (2002)Google Scholar
  6. 6.
    Chavent, G., Dupuy, M., Lemonnier, P.: History matching by use of optimal control theory. SPE J. 15, 74–86 (1975). doi: 10.2118/4627-PA CrossRefGoogle Scholar
  7. 7.
    Chen, C.L., Reynolds, A.: Robust constrained optimization of short- and long-term net present value for closed-loop reservoir management. SPE J. 17(3), 849–864 (2012)CrossRefGoogle Scholar
  8. 8.
    Chen, W., Gavalas, G., Wasserman, M.: A new algorithm for automatic history matching. SPE J. 14 (6), 593–608 (1974)CrossRefGoogle Scholar
  9. 9.
    Chen, Y., Oliver, D.: Ensemble-based closed-loop optimization applied to Brugge field. SPE Reserv. Eval. Eng. 13(1), 56–71 (2010)CrossRefGoogle Scholar
  10. 10.
    Coats, K.: An equation of state compositional model. SPE J. 20(5), 363–376 (1980)CrossRefGoogle Scholar
  11. 11.
    De Montleau, P., Cominelli, A., Neylon, K., Rowan, D., Pallister, I., Tesaker, O., Nygard, I.: Production optimization under constraints using adjoint gradients. In: 10th European Conference on the Mathematics of Oil Recovery (2006)Google Scholar
  12. 12.
    Doublet, D., Aanonsen, S., Tai, X.: An efficient method for smart well production optimisation. J. Petroleum Sci. Eng. 69(1–2), 25–39 (2009)CrossRefGoogle Scholar
  13. 13.
    Echeverría Ciaurri, D., Isebor, O.J., Durlofsky, L.J.: Application of derivative-free methologies to generally constrained oil production optimisation problems. Int. J. Math. Modell. Numer. Optim. 2, 134–161 (2011)Google Scholar
  14. 14.
    Elman, H., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation, OUP Oxford (2005)Google Scholar
  15. 15.
    Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Rev. 47(1), 99–131 (2005)CrossRefGoogle Scholar
  16. 16.
    Han, C., Wallis, J., Sarma, P., Li, G., Schrader, M.L., Chen, W.: Adaptation of the CPR preconditioner for efficient solution of the adjoint equation. SPE J. 18(2), 207–213 (2013). doi: 10.2118/141300-PA CrossRefGoogle Scholar
  17. 17.
    Jansen, J.D.: Adjoint-based optimization of multi-phase flow through porous media - a review. Comput. Fluids 46(1), 40–51 (2011). doi: 10.1016/j.compfluid.2010.09.039 CrossRefGoogle Scholar
  18. 18.
    Kourounis, D., Durlofsky, L.J., Jansen, J.D., Aziz, K.: Adjoint formulation and constraint handling for gradient-based optimization of compositional reservoir flow. Computational Geosciences, pp. 1–21 (2014). doi: 10.1007/s10596-013-9385-8
  19. 19.
    Kraaijevanger, J., Egberts, P., Valstar, J., Buurman, H.: Optimal waterflood design using the adjoint method. In: Paper SPE 105764 Presented at the SPE Reservoir Simulation Symposium. Houston, USA (2007). doi: 10.2118/105764-MS
  20. 20.
    Li, R., Reynolds, A., Oliver, D.: History matching of three-phase flow production data. SPE J. 8(4), 328–340 (2003). doi: 10.2118/87336-PA CrossRefGoogle Scholar
  21. 21.
    Lien, M., Brouwer, D., Manseth, T., Jansen, J.D.: Multiscale regularization of flooding optimization for smart field management. SPE J. 13(2), 195–204 (2008)CrossRefGoogle Scholar
  22. 22.
    Liu, W., Ramirez, W., Qi, Y.: Optimal control of steam flooding. SPE Adv. Technol. Series 1(2), 73–82 (1993)CrossRefGoogle Scholar
  23. 23.
    Mehos, G., Ramirez, W.: Use of optimal control theory to optimize carbon dioxide miscible-flooding enhanced oil recovery. J. Petroleum Sci. Eng. 2(4), 247–260 (1989)CrossRefGoogle Scholar
  24. 24.
    NTNU (IO Center): Center of Integrated Operations in Petroleum Industry. Website (2011). http://www.ipt.ntnu.no/norne
  25. 25.
    Oliver, D., Reynolds, A., Liu, N.: Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge University Press, Cambridge (2008)Google Scholar
  26. 26.
    Ramirez, W.: Application of Optimal Control Theory to Enhanced Oil Recovery. Elsevier Science Ltd, Amsterdam (1987)Google Scholar
  27. 27.
    Sarma, P., Chen, W., Durlofsky, L.J., Aziz, K.: Production optimization with adjoint models under nonlinear control-state path inequality constraints. SPE Reserv. Eval. Eng. 11(2), 326–339 (2008)CrossRefGoogle Scholar
  28. 28.
    Sarma, P., Durlofsky, L.J., Aziz, K., Chen, W.H.: Efficient real-time reservoir management using adjoint-based optimal control and model updating. Comput. Geosci. 10 (1), 3–36 (2006). doi:  10.1007/s10596-005-9009-z CrossRefGoogle Scholar
  29. 29.
    Sudaryanto, B., Yortsos, Y.: Optimization of fluid front dynamics in porous media using rate control. Phys. Fluids 12(7), 1656–1670 (2000)CrossRefGoogle Scholar
  30. 30.
    Suwartadi, E., Krogstad, S., Foss, B.: Nonlinear output constraints handling for production optimization of oil reservoirs. Comput. Geosci. 16, 499–517 (2012)CrossRefGoogle Scholar
  31. 31.
    Van Essen, G., Zandvliet, M., Van den Hof, P., Bosgra, O., Jansen, J.D.: Robust waterflooding optimization of multiple geological scenarios. SPE J. 14(1), 202–210 (2009). doi: 10.2118/102913-PA CrossRefGoogle Scholar
  32. 32.
    Virnovski, G.: Waterflooding strategy design using optimal control theory. In: 6th European IOR Symposium, pp 437–446. Stavanger, Norway (1991)Google Scholar
  33. 33.
    Voskov, D., Tchelepi, H.: Comparison of nonlinear formulations for two-phase multi-component EoS based simulation. J. Petroleum Sci.Eng. 82–83, 101–111 (2012). doi:  10.1016/j.petrol.2011.10.012 CrossRefGoogle Scholar
  34. 34.
    Voskov, D.V., Younis, R., Tchelepi, H.A.: Comparison of nonlinear formulations for isothermal compositional flow simulation. In: SPE paper 118966 Presented at the SPE Reservoir Simulation Symposium. The Woodlands (2009)Google Scholar
  35. 35.
    Wang, C., Li, G., Reynolds, A.: Production optimization in closed-loop reservoir management. SPE J. 14(3), 506–523 (2009)CrossRefGoogle Scholar
  36. 36.
    Young, L., Stephenson, R.: A generalized compositional approach for reservoir simulation. J. Petroleum Sci. Eng. 23(5), 727–742 (1983). doi: 10.2118/10516-PA CrossRefGoogle Scholar
  37. 37.
    Younis, R., Aziz, K.: Parallel automatically differentiable data-types for next-generation simulator development. In: SPE Paper 106493 Presented at the SPE Reservoir Simulation Symposium. Houston (2007). doi: 10.2118/106493-MS
  38. 38.
    Younis, R., Tchelepi, H., Aziz, K.: Adaptively localized continuation-Newton method–Nonlinear solvers that converge all the time. SPE J. 15(2), 526–544 (2010). doi: 10.2118/119147-PA. SPE-119147-PACrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Computational Science, Faculty of InformaticsUniversità della Svizzera ItalianaLuganoSwitzerland

Personalised recommendations