Skip to main content

Fast wavelet-based stochastic simulation using training images


Spatial uncertainty modelling is a complex and challenging job for orebody modelling in mining, reservoir characterization in petroleum, and contamination modelling in air and water. Stochastic simulation algorithms are popular methods for such modelling. In this paper, discrete wavelet transformation (DWT)-based multiple point simulation algorithm for continuous variable is proposed that handles multi-scale spatial characteristics in datasets and training images. The DWT of a training image provides multi-scale high-frequency wavelet images and one low-frequency scaling image at the coarsest scale. The simulation of the proposed approach is performed on the frequency (wavelet) domain where the scaling image and wavelet images across the scale are simulated jointly. The inverse DWT reconstructs simulated realizations of an attribute of interest in the space domain. An automatic scale-selection algorithm using dominant mode difference is applied for the selection of the optimal scale of wavelet decomposition. The proposed algorithm reduces the computational time required for simulating large domain as compared to spatial domain multi-point simulation algorithm. The algorithm is tested with an exhaustive dataset using conditional and unconditional simulation in two- and three-dimensional fluvial reservoir and mining blasted rock data. The realizations generated by the proposed algorithm perform well and reproduce the statistics of the training image. The study conducted comparing the spatial domain filtersim multiple-point simulation algorithm suggests that the proposed algorithm generates equally good realizations at lower computational cost.

This is a preview of subscription content, access via your institution.


  1. 1.

    Adams, M.D., Kossentini, F.: Reversible integer-to-integer wavelet transform for image compression: performance evaluation and analysis. IEEE Trans. Image Process 8(6), 1010–1024 (2000)

    Article  Google Scholar 

  2. 2.

    Arpat, G.: Sequential simulation with patterns, PhD thesis, Stanford University (2005)

  3. 3.

    Arpat, G., Caers, J.: Conditional simulation with patterns. Math. Geol. 39(2), 177–203 (2007)

    Article  Google Scholar 

  4. 4.

    Ashikhmin, M.: Synthesizing natural, textures. In: The proceedings of 2001 ACM symposium on interactive 3D graphics, pp. 217–226. Research Triangle Park, North Carolina (2001)

    Book  Google Scholar 

  5. 5.

    Bosch, E.H., Gonzalez, A.P., Vivas, J.G., Easley, G.R.: Directional wavelets and a wavelet variogram for two-dimensional data. Math. Geosci. 41(6), 611–641 (2009)

    Article  Google Scholar 

  6. 6.

    Boucher, A.: Sub-pixel mapping of coarse satellite remote sensing images with stochastic simulation from training images. Math. Geosci. 41(3), 265–290 (2009)

    Article  Google Scholar 

  7. 7.

    Can, F., Ismail, S.A., Engin, D.: Efficiency and effectiveness of query processing in cluster-based retrieval. Inf. Syst. 29(8), 697–717 (2004)

    Article  Google Scholar 

  8. 8.

    Chatterjee, S., Dimitrakopoulos, R.: Multi-scale stochastic simulation with wavelet-based approach. Comput. Geosci. 45, 177–189 (2012)

    Article  Google Scholar 

  9. 9.

    Chatterjee, S., Dimitrakopoulos, R., Mustafa, H.: Dimensional reduction of pattern-based simulation using wavelet analysis. Math. Geosci. 44, 343–374 (2012)

    Article  Google Scholar 

  10. 10.

    Daubechies, I.: Ten lectures on wavelets. SIAM, Philadelphia (1992)

    Book  Google Scholar 

  11. 11.

    Demirel, H., Anbarjafari, G.: Image resolution enhancement by using discrete and stationary wavelet decomposition. IEEE Trans. Image Process. 20(5), 1458–1460 (2011)

    Article  Google Scholar 

  12. 12.

    Dimitrakopoulos, R., Mustapha, H., Gloaguen, E.: High-order statistics of spatial random fields: exploring spatial cumulants for modeling complex non-Gaussian and non-linear phenomena. Math. Geosci. 42(1), 65–99 (2010)

    Article  Google Scholar 

  13. 13.

    Ding, L., Goshtasby, A., Satter, M.: Volume image registration by template matching. Image Vis. Comput. 19(12), 821–832 (2001)

    Article  Google Scholar 

  14. 14.

    Dumic, E., Grgic, S., Grgic, R.: The use of wavelets in image interpolation: possibilities and limitations. Radio Eng 16(4), 101–109 (2007)

    Google Scholar 

  15. 15.

    Foufoula-Georgiou, E., Kumar, P.: Wavelets in geophysics. Academic, San Diego (1994)

    Google Scholar 

  16. 16.

    Gardet, C., Ravalec, M.: Multiscale multiple point simulation based on texture synthesis. In: Proceedings of 14th European conference on the mathematics of oil recovery, pp. 1524–1535. Catania, Italy (2014)

  17. 17.

    Gloaguen, E., Dimitrakopoulos, R.: Two dimensional conditional simulation based on the wavelet decomposition of training images. Math. Geosci. 41(7), 679–701 (2009)

    Article  Google Scholar 

  18. 18.

    Goovaerts, P.: Geostatistics for natural resources evaluation (Applied Geostatistics Series). Oxford University Press, New York (1998)

    Google Scholar 

  19. 19.

    Goshtasby, A., Gage, S.H., Bartholic, J.F.: A two-stage cross-correlation approach to template matching. IEEE Trans. Pattern Anal. Mach. Intell. 6(3), 374–378 (1984)

    Article  Google Scholar 

  20. 20.

    Guardiano, F., Srivastava, R.M.: Multivariate geostatistics: beyond bivariate moments. In: Soares, A. (ed.) Geostatistics-Troia, vol. 1, pp 133–144. Kluwer Academic, Dordrecht (1993)

    Google Scholar 

  21. 21.

    Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning, Data mining, inference, and prediction (Springer Series in Statistics). Springer, New York (2011)

    Google Scholar 

  22. 22.

    Henrion, V., Caumon, V., Cherpeau, N.: ODSIM: An object-distance simulation method for conditioning complex natural structures. Math. Geosci. 42(8), 911–924 (2011)

    Article  Google Scholar 

  23. 23.

    Honarkhah, M., Caers, J.: Stochastic simulation of patterns using distance-based pattern modelling. Math. Geosci. 42, 487–517 (2010)

    Article  Google Scholar 

  24. 24.

    Journel, A.G.: Deterministic geostatistics: a new visit. In: Baafy, E., Shofield, N (eds.) Geostatistics Woolongong, vol. 1996, pp. 213–224. Kluwer, Dordrecht (1997)

    Google Scholar 

  25. 25.

    Journel, A.: Roadblocks to the evaluation of ore reserved - the simulation overpass and putting more geology into numerical models of deposit. In: Dimitrakopoulos, R. (ed.) Orebody modeling and strategic mine planning, AusIIMM, Melbourn, 2nd Edition, Spectrum Series 14, pp 29–32 (2007)

  26. 26.

    Kim, H.Y., Araújo, S.A.: Grayscale template-matching invariant to rotation, scale, translation, brightness and contrast, PSIVT’07. In: Proceedings of the 2nd Pacific Rim conference on advances in image and video technology, pp. 100–113. Berlin, Heidelberg (2007)

    Google Scholar 

  27. 27.

    Kuglin, C., Hines, D.: The phase correlation image alignment method. In: Proceedings of the IEEE International Conference on Cybernetics and Society, pp. 163–165. San Francisco (1975)

  28. 28.

    Kumar, P.: A wavelet based methodology for scale-space anisotropic analysis. Geophys. Res. Lett. 22(20), 2777–2780 (1995)

    Article  Google Scholar 

  29. 29.

    Lark, R.M.: Spatial analysis of categorical soil variables with the wavelet transformation. Eur. J. Soil Sci. 56 (6), 779–792 (2005)

    Google Scholar 

  30. 30.

    Le Coz, M., Genthon, P., Adler, P.M.: Multiple-point statistics for modeling facies heterogeneities in a porous medium: the Komadugu-Yobe alluvium, Lake Chad Basin. Math. Geosci. 43(7), 861–878 (2011)

    Article  Google Scholar 

  31. 31.

    Li, B.-L., Loehle, C.: Wavelet analysis of multiscale permeabilities in the subsurface. Geophysical Research Letters 22(23), 3123–3126 (1995)

    Article  Google Scholar 

  32. 32.

    Macías, J.A.R., Expósito, A.G.: Efficient computation of the running discrete Haar transform. IEEE Trans. Power Delivery 21(1), 504–505 (2006)

    Article  Google Scholar 

  33. 33.

    MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley symposium on mathematical statistics and probability, vol. 1, pp 281–297. University of California Press, Berkeley (1967)

    Google Scholar 

  34. 34.

    Mallat, S.: A theory for multi-resolution signal decomposition: the wavelet representation. IEEE Pattern. Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  Google Scholar 

  35. 35.

    Mallat, S.: A wavelet tour of signal processing. Academic, San Diego (1998)

    Google Scholar 

  36. 36.

    Mao, S., Journel, A.G.: Generation of a reference petrophysical and seismic 3D data set: the Stanford V reservoir. In: Stanford center for reservoir forecasting annual meeting. (1999), (2009). Accessed 23 February 2013

  37. 37.

    Mariethoz, G., Renard, P.: Reconstruction of incomplete data sets or images using direct sampling. Math. Geosci. 42(3), 245–268 (2010)

    Article  Google Scholar 

  38. 38.

    Mariethoz, G, Renard, P.: Special issue on 20 years of multiple-point statistics: Part 2. Math. Geosci. 46 (5), 517–518 (2014)

    Article  Google Scholar 

  39. 39.

    Meyer, Y., Ryan, R.D.: Wavelets: algorithms and applications. Society for industrial and applied mathematics, Philadelphia (1993)

    Google Scholar 

  40. 40.

    Mustafa, H., Chatterjee, S., Dimitrakopoulos, R., Graf, T.: Wavelet-based pattern simulation for geologic heterogeneity recognition: implications in subsurface flow and transport simulations. Adv. Water Resour. (2012). doi:10.1016/j.advwatres.2012.11.018

  41. 41.

    Mustapha, H., Dimitrakopoulos, R.: High-order stochastic simulations for complex non-Gaussian and non-linear geological patterns. Math. Geosci. 42(5), 457–485 (2010)

    Article  Google Scholar 

  42. 42.

    Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40, 49–71 (2000)

    Article  Google Scholar 

  43. 43.

    Quddus, A., Gabbouj, M.: Wavelet-based corner detection technique using optimal scale. Pattern Recogn. Lett. 23, 215–220 (2002)

    Article  Google Scholar 

  44. 44.

    Strebelle, S.: Conditional simulation of complex geological structures using multiple-point statistics. Math. Geol. 34(1), 1–21 (2002)

    Article  Google Scholar 

  45. 45.

    Strebelle, S., Zhang, T.: Non-stationary multiple-point geostatistical models. In: Leuangthong, O., Deutsch, C. V. (eds.) Geostatistics Banff, pp 235–244. Kluwer, Dordrecht (2004)

    Google Scholar 

  46. 46.

    Strebelle, S., Cavelius, C.: Solving speed and memory issues in multiple-point statistics simulation program SNESIM. Math. Geosci. 46(2), 171–186 (2014)

    Article  Google Scholar 

  47. 47.

    Toftaker, H., Tjelmeland, H.: Construction of binary multi-grid Markov random field prior models from training images. Math. Geosci. 45, 383–409 (2013)

    Article  Google Scholar 

  48. 48.

    Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. J. R. Statist. Soc. B 63(2), 411–423 (2001)

    Article  Google Scholar 

  49. 49.

    Tran, T., Mueller, U.A., Bloom, L.M.: Multi-scale conditional simulation of two-dimensional random processes using Haar wavelets. In: Proceedings of GAA symposium, perth, pp. 56–78 (2002)

  50. 50.

    Vannucci, M., Corradi, F.: Covariance structure of wavelet coefficients: theory and models in a Bayesian perspective. J.R. Statis. Soc. B 61, 971–986 (1999)

    Article  Google Scholar 

  51. 51.

    Walnut, D.: An introduction to wavelets analysis. Birkhauser, Boston (1998)

    Google Scholar 

  52. 52.

    Wei, L., Levoy, M.: Fast texture synthesis using tree-structured vector quantization. In: Proceedings of SIGGRAPH 2000 (2000)

  53. 53.

    Wu, J., Zhang, T., Journel, A.: Fast FILTERSIM simulation with score-based distance. Math. Geosci. 40(7), 773–788 (2008)

    Article  Google Scholar 

  54. 54.

    Zhang, T: MPS-Driven digital rock modeling and upscaling. Math. Geosci. (2015). doi:10.1007/s11004-015-9582-1

    Google Scholar 

  55. 55.

    Zhang, T., Switzer, P., Journel, A.: Filter-based classification of training image patterns for spatial simulation. Math. Geol. 38(1), 63–80 (2006)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hussein Mustapha.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, S., Mustapha, H. & Dimitrakopoulos, R. Fast wavelet-based stochastic simulation using training images. Comput Geosci 20, 399–420 (2016).

Download citation


  • Discrete wavelet transformation
  • Multi-scale analysis
  • Template matching
  • K-means clustering
  • Conditional simulation