Computational Geosciences

, Volume 20, Issue 3, pp 399–420 | Cite as

Fast wavelet-based stochastic simulation using training images

  • Snehamoy Chatterjee
  • Hussein Mustapha
  • Roussos Dimitrakopoulos
ORIGINAL PAPER

Abstract

Spatial uncertainty modelling is a complex and challenging job for orebody modelling in mining, reservoir characterization in petroleum, and contamination modelling in air and water. Stochastic simulation algorithms are popular methods for such modelling. In this paper, discrete wavelet transformation (DWT)-based multiple point simulation algorithm for continuous variable is proposed that handles multi-scale spatial characteristics in datasets and training images. The DWT of a training image provides multi-scale high-frequency wavelet images and one low-frequency scaling image at the coarsest scale. The simulation of the proposed approach is performed on the frequency (wavelet) domain where the scaling image and wavelet images across the scale are simulated jointly. The inverse DWT reconstructs simulated realizations of an attribute of interest in the space domain. An automatic scale-selection algorithm using dominant mode difference is applied for the selection of the optimal scale of wavelet decomposition. The proposed algorithm reduces the computational time required for simulating large domain as compared to spatial domain multi-point simulation algorithm. The algorithm is tested with an exhaustive dataset using conditional and unconditional simulation in two- and three-dimensional fluvial reservoir and mining blasted rock data. The realizations generated by the proposed algorithm perform well and reproduce the statistics of the training image. The study conducted comparing the spatial domain filtersim multiple-point simulation algorithm suggests that the proposed algorithm generates equally good realizations at lower computational cost.

Keywords

Discrete wavelet transformation Multi-scale analysis Template matching K-means clustering Conditional simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, M.D., Kossentini, F.: Reversible integer-to-integer wavelet transform for image compression: performance evaluation and analysis. IEEE Trans. Image Process 8(6), 1010–1024 (2000)CrossRefGoogle Scholar
  2. 2.
    Arpat, G.: Sequential simulation with patterns, PhD thesis, Stanford University (2005)Google Scholar
  3. 3.
    Arpat, G., Caers, J.: Conditional simulation with patterns. Math. Geol. 39(2), 177–203 (2007)CrossRefGoogle Scholar
  4. 4.
    Ashikhmin, M.: Synthesizing natural, textures. In: The proceedings of 2001 ACM symposium on interactive 3D graphics, pp. 217–226. Research Triangle Park, North Carolina (2001)CrossRefGoogle Scholar
  5. 5.
    Bosch, E.H., Gonzalez, A.P., Vivas, J.G., Easley, G.R.: Directional wavelets and a wavelet variogram for two-dimensional data. Math. Geosci. 41(6), 611–641 (2009)CrossRefGoogle Scholar
  6. 6.
    Boucher, A.: Sub-pixel mapping of coarse satellite remote sensing images with stochastic simulation from training images. Math. Geosci. 41(3), 265–290 (2009)CrossRefGoogle Scholar
  7. 7.
    Can, F., Ismail, S.A., Engin, D.: Efficiency and effectiveness of query processing in cluster-based retrieval. Inf. Syst. 29(8), 697–717 (2004)CrossRefGoogle Scholar
  8. 8.
    Chatterjee, S., Dimitrakopoulos, R.: Multi-scale stochastic simulation with wavelet-based approach. Comput. Geosci. 45, 177–189 (2012)CrossRefGoogle Scholar
  9. 9.
    Chatterjee, S., Dimitrakopoulos, R., Mustafa, H.: Dimensional reduction of pattern-based simulation using wavelet analysis. Math. Geosci. 44, 343–374 (2012)CrossRefGoogle Scholar
  10. 10.
    Daubechies, I.: Ten lectures on wavelets. SIAM, Philadelphia (1992)CrossRefGoogle Scholar
  11. 11.
    Demirel, H., Anbarjafari, G.: Image resolution enhancement by using discrete and stationary wavelet decomposition. IEEE Trans. Image Process. 20(5), 1458–1460 (2011)CrossRefGoogle Scholar
  12. 12.
    Dimitrakopoulos, R., Mustapha, H., Gloaguen, E.: High-order statistics of spatial random fields: exploring spatial cumulants for modeling complex non-Gaussian and non-linear phenomena. Math. Geosci. 42(1), 65–99 (2010)CrossRefGoogle Scholar
  13. 13.
    Ding, L., Goshtasby, A., Satter, M.: Volume image registration by template matching. Image Vis. Comput. 19(12), 821–832 (2001)CrossRefGoogle Scholar
  14. 14.
    Dumic, E., Grgic, S., Grgic, R.: The use of wavelets in image interpolation: possibilities and limitations. Radio Eng 16(4), 101–109 (2007)Google Scholar
  15. 15.
    Foufoula-Georgiou, E., Kumar, P.: Wavelets in geophysics. Academic, San Diego (1994)Google Scholar
  16. 16.
    Gardet, C., Ravalec, M.: Multiscale multiple point simulation based on texture synthesis. In: Proceedings of 14th European conference on the mathematics of oil recovery, pp. 1524–1535. Catania, Italy (2014)Google Scholar
  17. 17.
    Gloaguen, E., Dimitrakopoulos, R.: Two dimensional conditional simulation based on the wavelet decomposition of training images. Math. Geosci. 41(7), 679–701 (2009)CrossRefGoogle Scholar
  18. 18.
    Goovaerts, P.: Geostatistics for natural resources evaluation (Applied Geostatistics Series). Oxford University Press, New York (1998)Google Scholar
  19. 19.
    Goshtasby, A., Gage, S.H., Bartholic, J.F.: A two-stage cross-correlation approach to template matching. IEEE Trans. Pattern Anal. Mach. Intell. 6(3), 374–378 (1984)CrossRefGoogle Scholar
  20. 20.
    Guardiano, F., Srivastava, R.M.: Multivariate geostatistics: beyond bivariate moments. In: Soares, A. (ed.) Geostatistics-Troia, vol. 1, pp 133–144. Kluwer Academic, Dordrecht (1993)Google Scholar
  21. 21.
    Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning, Data mining, inference, and prediction (Springer Series in Statistics). Springer, New York (2011)Google Scholar
  22. 22.
    Henrion, V., Caumon, V., Cherpeau, N.: ODSIM: An object-distance simulation method for conditioning complex natural structures. Math. Geosci. 42(8), 911–924 (2011)CrossRefGoogle Scholar
  23. 23.
    Honarkhah, M., Caers, J.: Stochastic simulation of patterns using distance-based pattern modelling. Math. Geosci. 42, 487–517 (2010)CrossRefGoogle Scholar
  24. 24.
    Journel, A.G.: Deterministic geostatistics: a new visit. In: Baafy, E., Shofield, N (eds.) Geostatistics Woolongong, vol. 1996, pp. 213–224. Kluwer, Dordrecht (1997)Google Scholar
  25. 25.
    Journel, A.: Roadblocks to the evaluation of ore reserved - the simulation overpass and putting more geology into numerical models of deposit. In: Dimitrakopoulos, R. (ed.) Orebody modeling and strategic mine planning, AusIIMM, Melbourn, 2nd Edition, Spectrum Series 14, pp 29–32 (2007)Google Scholar
  26. 26.
    Kim, H.Y., Araújo, S.A.: Grayscale template-matching invariant to rotation, scale, translation, brightness and contrast, PSIVT’07. In: Proceedings of the 2nd Pacific Rim conference on advances in image and video technology, pp. 100–113. Berlin, Heidelberg (2007)Google Scholar
  27. 27.
    Kuglin, C., Hines, D.: The phase correlation image alignment method. In: Proceedings of the IEEE International Conference on Cybernetics and Society, pp. 163–165. San Francisco (1975)Google Scholar
  28. 28.
    Kumar, P.: A wavelet based methodology for scale-space anisotropic analysis. Geophys. Res. Lett. 22(20), 2777–2780 (1995)CrossRefGoogle Scholar
  29. 29.
    Lark, R.M.: Spatial analysis of categorical soil variables with the wavelet transformation. Eur. J. Soil Sci. 56 (6), 779–792 (2005)Google Scholar
  30. 30.
    Le Coz, M., Genthon, P., Adler, P.M.: Multiple-point statistics for modeling facies heterogeneities in a porous medium: the Komadugu-Yobe alluvium, Lake Chad Basin. Math. Geosci. 43(7), 861–878 (2011)CrossRefGoogle Scholar
  31. 31.
    Li, B.-L., Loehle, C.: Wavelet analysis of multiscale permeabilities in the subsurface. Geophysical Research Letters 22(23), 3123–3126 (1995)CrossRefGoogle Scholar
  32. 32.
    Macías, J.A.R., Expósito, A.G.: Efficient computation of the running discrete Haar transform. IEEE Trans. Power Delivery 21(1), 504–505 (2006)CrossRefGoogle Scholar
  33. 33.
    MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley symposium on mathematical statistics and probability, vol. 1, pp 281–297. University of California Press, Berkeley (1967)Google Scholar
  34. 34.
    Mallat, S.: A theory for multi-resolution signal decomposition: the wavelet representation. IEEE Pattern. Anal. Mach. Intell. 11(7), 674–693 (1989)CrossRefGoogle Scholar
  35. 35.
    Mallat, S.: A wavelet tour of signal processing. Academic, San Diego (1998)Google Scholar
  36. 36.
    Mao, S., Journel, A.G.: Generation of a reference petrophysical and seismic 3D data set: the Stanford V reservoir. In: Stanford center for reservoir forecasting annual meeting. http://ekofisk.stanford.edu/SCRF.html (1999), (2009). Accessed 23 February 2013
  37. 37.
    Mariethoz, G., Renard, P.: Reconstruction of incomplete data sets or images using direct sampling. Math. Geosci. 42(3), 245–268 (2010)CrossRefGoogle Scholar
  38. 38.
    Mariethoz, G, Renard, P.: Special issue on 20 years of multiple-point statistics: Part 2. Math. Geosci. 46 (5), 517–518 (2014)CrossRefGoogle Scholar
  39. 39.
    Meyer, Y., Ryan, R.D.: Wavelets: algorithms and applications. Society for industrial and applied mathematics, Philadelphia (1993)Google Scholar
  40. 40.
    Mustafa, H., Chatterjee, S., Dimitrakopoulos, R., Graf, T.: Wavelet-based pattern simulation for geologic heterogeneity recognition: implications in subsurface flow and transport simulations. Adv. Water Resour. (2012). doi:10.1016/j.advwatres.2012.11.018
  41. 41.
    Mustapha, H., Dimitrakopoulos, R.: High-order stochastic simulations for complex non-Gaussian and non-linear geological patterns. Math. Geosci. 42(5), 457–485 (2010)CrossRefGoogle Scholar
  42. 42.
    Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40, 49–71 (2000)CrossRefGoogle Scholar
  43. 43.
    Quddus, A., Gabbouj, M.: Wavelet-based corner detection technique using optimal scale. Pattern Recogn. Lett. 23, 215–220 (2002)CrossRefGoogle Scholar
  44. 44.
    Strebelle, S.: Conditional simulation of complex geological structures using multiple-point statistics. Math. Geol. 34(1), 1–21 (2002)CrossRefGoogle Scholar
  45. 45.
    Strebelle, S., Zhang, T.: Non-stationary multiple-point geostatistical models. In: Leuangthong, O., Deutsch, C. V. (eds.) Geostatistics Banff, pp 235–244. Kluwer, Dordrecht (2004)Google Scholar
  46. 46.
    Strebelle, S., Cavelius, C.: Solving speed and memory issues in multiple-point statistics simulation program SNESIM. Math. Geosci. 46(2), 171–186 (2014)CrossRefGoogle Scholar
  47. 47.
    Toftaker, H., Tjelmeland, H.: Construction of binary multi-grid Markov random field prior models from training images. Math. Geosci. 45, 383–409 (2013)CrossRefGoogle Scholar
  48. 48.
    Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. J. R. Statist. Soc. B 63(2), 411–423 (2001)CrossRefGoogle Scholar
  49. 49.
    Tran, T., Mueller, U.A., Bloom, L.M.: Multi-scale conditional simulation of two-dimensional random processes using Haar wavelets. In: Proceedings of GAA symposium, perth, pp. 56–78 (2002)Google Scholar
  50. 50.
    Vannucci, M., Corradi, F.: Covariance structure of wavelet coefficients: theory and models in a Bayesian perspective. J.R. Statis. Soc. B 61, 971–986 (1999)CrossRefGoogle Scholar
  51. 51.
    Walnut, D.: An introduction to wavelets analysis. Birkhauser, Boston (1998)Google Scholar
  52. 52.
    Wei, L., Levoy, M.: Fast texture synthesis using tree-structured vector quantization. In: Proceedings of SIGGRAPH 2000 (2000)Google Scholar
  53. 53.
    Wu, J., Zhang, T., Journel, A.: Fast FILTERSIM simulation with score-based distance. Math. Geosci. 40(7), 773–788 (2008)CrossRefGoogle Scholar
  54. 54.
    Zhang, T: MPS-Driven digital rock modeling and upscaling. Math. Geosci. (2015). doi:10.1007/s11004-015-9582-1 Google Scholar
  55. 55.
    Zhang, T., Switzer, P., Journel, A.: Filter-based classification of training image patterns for spatial simulation. Math. Geol. 38(1), 63–80 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Snehamoy Chatterjee
    • 3
  • Hussein Mustapha
    • 2
  • Roussos Dimitrakopoulos
    • 1
  1. 1.COSMO–Stochastic Mine Planning Laboratory, Department of Mining and Materials EngineeringMcGill UniversityMontrealCanada
  2. 2.Schlumberger Abingdon Technology CentreAbingdonUK
  3. 3.Michigan Technological UniversityHoughtonUSA

Personalised recommendations