Computational Geosciences

, Volume 19, Issue 2, pp 403–422 | Cite as

ParCrunchFlow: an efficient, parallel reactive transport simulation tool for physically and chemically heterogeneous saturated subsurface environments

  • James J. Beisman
  • Reed M. Maxwell
  • Alexis K. Navarre-Sitchler
  • Carl I. Steefel
  • Sergi Molins
ORIGINAL PAPER

Abstract

Understanding the interactions between physical, geochemical, and biological processes in the shallow subsurface is integral to the development of effective contamination remediation techniques, or the accurate quantification of nutrient fluxes and biogeochemical cycling. Hydrology is a primary control on the behavior of shallow subsurface environments and must be realistically represented if we hope to accurately model these systems. ParCrunchFlow is a new parallel reactive transport model that was created by coupling a multicomponent geochemical code (CrunchFlow) with a parallel hydrologic model (ParFlow). These models are coupled in an explicit operator-splitting manner. ParCrunchFlow can simulate three-dimensional multicomponent reactive transport in highly resolved, field-scale systems by taking advantage of ParFlow’s efficient parallelism and robust hydrologic abilities, and CrunchFlow’s extensive geochemical abilities. Here, the development of ParCrunchFlow is described and two simple verification simulations are presented. The parallel performance is evaluated and shows that ParCrunchFlow has the ability to simulate very large problems. A series of simulations involving the biologically mediated reduction of nitrate in a floodplain aquifer were conducted. These floodplain simulations show that this code enables us to represent more realistically the variability in chemical concentrations observed in many field-scale systems. The numerical formulation implemented in ParCrunchFlow minimizes numerical dispersion and allows the use of higher-order explicit advection schemes. The effects that numerical dispersion can have on finely resolved, field-scale reactive transport simulations have been evaluated. The smooth gradients produced by a first-order advection scheme create an artificial mixing effect, which decreases the spatial variance in solute concentrations and leads to an increase in overall reaction rates. The work presented here is the first step in a larger effort to couple these models in a transient, variably saturated surface-subsurface framework, with additional geochemical abilities.

Keywords

Parallel reactive transport Subsurface nutrient cycling Biogeochemical reactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Li, L., Peters, C.A., Celia, M.A.: Upscaling geochemical reaction rates using pore-scale network modeling. Adv. Water Resour. 29(9), 1351–1370 (2006). doi: 10.1016/j.advwatres.2005.10.011 CrossRefGoogle Scholar
  2. 2.
    White, A.F., Brantley, S.L.: The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field. Chem. Geol. 202(3), 479–506 (2003). doi: 10.1016/j.chemgeo.2003.03.001 CrossRefGoogle Scholar
  3. 3.
    Maher, K., Steefel, C.I., DePaolo, D.J., Viani, B.E.: The mineral dissolution rate conundrum: insights from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments. Geochim. Cosmochim. Acta. 70(2), 337–363 (2006). doi: 10.1016/j.gca.2005.09.001 CrossRefGoogle Scholar
  4. 4.
    Navarre-Sitchler, A., Brantley, S.: Basalt weathering across scales. Earth Planet. Sci. Lett. 261(1), 321–334 (2007). doi: 10.1016/j.epsl.2007.07.010 CrossRefGoogle Scholar
  5. 5.
    Lichtner, P.C.: Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems. Geochim. Cosmochim. Acta. 49(3), 779–800 (1985). doi: 10.1016/0016-7037(85)90172-3 CrossRefGoogle Scholar
  6. 6.
    Steefel, C.I., Lasaga, A.C.: A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. Am. J. Sci. 294(5), 529–592 (1994). doi: 10.2475/ajs.294.5.529 CrossRefGoogle Scholar
  7. 7.
    Steefel, C.I., DePaolo, D.J., Lichtner, P.C.: Reactive transport modeling: an essential tool and a new research approach for the Earth sciences. Earth. Planet. Sci. Lett. 240(3), 539–558 (2005). doi: 10.1016/j.epsl.2005.09.017 CrossRefGoogle Scholar
  8. 8.
    Dagan, G.: Statistical theory of groundwater flow and transport: pore to laboratory, laboratory to formation, and formation to regional scale. Water Resour. Res. 22(9S), 120S–134S (1986). doi: 10.1029/WR022i09Sp0120S CrossRefGoogle Scholar
  9. 9.
    Dagan, G.: The significance of heterogeneity of evolving scales to transport in porous formations. Water Resour. Res. 30(12), 3327–3336 (1994). doi: 10.1029/94WR01798 CrossRefGoogle Scholar
  10. 10.
    Cushman, J.H.: Dynamics of Fluids in Hierarchical Porous Media. Academic Press Inc. Ltd., London (1990)Google Scholar
  11. 11.
    Gutiérrez, J.L., Jones, C.G.: Physical ecosystem engineers as agents of biogeochemical heterogeneity. Bioscience 56(3), 227–236 (2006). doi: 10.1641/0006-3568(2006)056[0227:PEEAAO]2.0.CO;2 CrossRefGoogle Scholar
  12. 12.
    Zhou, J., Xia, B., Huang, H., Palumbo, A.V., Tiedje, J.M.: Microbial diversity and heterogeneity in sandy subsurface soils. Appl. Environ. Microbiol. 70(3), 1723–1734 (2004). doi: 10.1128/AEM.70.3.1723-1734.2004 CrossRefGoogle Scholar
  13. 13.
    Englert, A., Hubbard, S., Williams, K., Li, L., Steefel, C.: Feedbacks between hydrological heterogeneity and bioremediation induced biogeochemical transformations. Environ. Sci. Technol. 43(14), 5197–5204 (2009). doi: 10.1021/es803367n CrossRefGoogle Scholar
  14. 14.
    Neuman, S.P., Zhang, Y.K.: A quasi-linear theory of non-Fickian and Fickian subsurface dispersion: 1. Theoretical analysis with application to isotropic media. Water Resour. Res. 26(5), 887–902 (1990). doi: 10.1029/WR026i005p00887 Google Scholar
  15. 15.
    Li, L., Steefel, C.I., Yang, L.: Scale dependence of mineral dissolution rates within single pores and fractures. Geochim. Cosmochim. Acta. 72(2), 360–377 (2008). doi: 10.1016/j.gca.2007.10.027 CrossRefGoogle Scholar
  16. 16.
    Navarre-Sitchler, A., Steefel, C.I., Yang, L., Tomutsa, L., Brantley, S.L.: Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast. J. Geophys. Res. (Earth Surf.) 114(F2) (2009). doi: 10.1029/2008JF001060
  17. 17.
    Yabusaki, S.B., Steefel, C.I., Wood, B.: Multidimensional, multicomponent, subsurface reactive transport in nonuniform velocity fields: code verification using an advective reactive streamtube approach. J. Contam. Hydrol. 30(3), 299–331 (1998). doi: 10.1016/S0169-7722(97)00050-8 CrossRefGoogle Scholar
  18. 18.
    Steefel, C.I.: New directions in hydrogeochemical transport modeling: incorporating multiple kinetic and equilibrium reaction pathways. In: Lawrence Livermore National Lab., CA (US) (2000)Google Scholar
  19. 19.
    Velbel, M.A.: Constancy of silicate-mineral weathering-rate ratios between natural and experimental weathering: implications for hydrologic control of differences in absolute rates. Chem. Geol. 105(1), 89–99 (1993). doi: 10.1016/0009-2541(93)90120-8 CrossRefGoogle Scholar
  20. 20.
    Clow, D., Drever, J.: Weathering rates as a function of flow through an alpine soil. Chem. Geol. 132(1), 131–141 (1996)CrossRefGoogle Scholar
  21. 21.
    Maher, K.: The dependence of chemical weathering rates on fluid residence time. Earth Planet. Sci. Lett. 294(1), 101–110 (2010). doi: 10.1016/j.epsl.2010.03.010 CrossRefGoogle Scholar
  22. 22.
    Navarre-Sitchler, A., Steefel, C.I., Sak, P.B., Brantley, S.L.: A reactive-transport model for weathering rind formation on basalt. Geochim. Cosmochim. Acta. 75(23), 7644–7667 (2011). doi: 10.1016/j.gca.2011.09.033 CrossRefGoogle Scholar
  23. 23.
    Siirila, E.R., Maxwell, R.M.: Evaluating effective reaction rates of kinetically driven solutes in large-scale, statistically anisotropic media: human health risk implications. Water Resour. Res. 48(4) (2012). doi: 10.1029/2011WR011516
  24. 24.
    Frei, S., Fleckenstein, J., Kollet, S., Maxwell, R.: Patterns and dynamics of river–aquifer exchange with variably-saturated flow using a fully-coupled model. J. Hydrology 375(3), 383–393 (2009). doi: 10.1016/j.jhydrol.2009.06.038 CrossRefGoogle Scholar
  25. 25.
    Maxwell, R.M., Kollet, S.J.: Quantifying the effects of three-dimensional subsurface heterogeneity on Hortonian runoff processes using a coupled numerical, stochastic approach. Adv. Water Resour. 31(5), 807–817 (2008). doi: doi: 10.1016/j.advwatres.2008.01.020 CrossRefGoogle Scholar
  26. 26.
    Ashby, S.F., Falgout, R.D.: A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations. Nucl. Sci. Eng. 124(1), 145–159 (1996)Google Scholar
  27. 27.
    Jones, J.E., Woodward, C.S.: Newton–Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems. Adv. Water Resour. 24(7), 763–774 (2001). doi: 10.1016/S0309-1708(00)00075-0 CrossRefGoogle Scholar
  28. 28.
    Kollet, S.J., Maxwell, R.M.: Integrated surface–groundwater flow modeling: a free-surface overland flow boundary condition in a parallel groundwater flow model. Adv. Water Resour. 29(7), 945–958 (2006). doi: 10.1016/j.advwatres.2005.08.006 CrossRefGoogle Scholar
  29. 29.
    Bell, J.B., Dawson, C.N., Shubin, G.R.: An unsplit, higher order Godunov method for scalar conservation laws in multiple dimensions. J. Comput. Phys. 74(1), 1–24 (1988). doi: 10.1016/0021-9991(88)90065-4 CrossRefGoogle Scholar
  30. 30.
    Steefel, C., Yabusaki, S.: OS3D/GIMRT, software for multicomponent-multidimensional reactive transport. User manual and programmer’s guide, PNL-11166. Pacific Northwest National Laboratory, Richland, WA 99352 (1996)Google Scholar
  31. 31.
    Steefel, C.I., Appelo, C.A.J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Lichtner, P.C., Mayer, K.U., Meeussen, J.C.L., Molins, S., Moulton, D., Parkhurst, D.L., Shao, H., Šimůnek, J., Spycher, N., Yabusaki, S.B., Yeh, G.T.: Reactive transport codes for subsurface environmental simulation. Computat. Geosci. (2014). doi: 10.1007/s10596-014-9443-x10.1007/s10596-014-9443-x Google Scholar
  32. 32.
    Maher, K., Steefel, C.I., White, A.F., Stonestrom, D.A.: The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California. Geochim. Cosmochim. Acta. 73(10), 2804–2831 (2009). doi: 10.1016/j.gca.2009.01.030 CrossRefGoogle Scholar
  33. 33.
    Atchley, A.L., Maxwell, R.M., Navarre-Sitchler, A.K.: Using streamlines to simulate stochastic reactive transport in heterogeneous aquifers: kinetic metal release and transport in CO2 impacted drinking water aquifers. Adv. Water Resour. 52, 93–106 (2013). doi: 10.1016/j.advwatres.2012.09.005 CrossRefGoogle Scholar
  34. 34.
    Chang, H.-s., Um, W., Rod, K., Serne, R.J., Thompson, A., Perdrial, N., Steefel, C.I., Chorover, J.: Strontium and cesium release mechanisms during unsaturated flow through waste-weathered Hanford sediments. Environ. Sci. Technol. 45(20), 8313– 8320 (2011). doi: 10.1021/es2010368 CrossRefGoogle Scholar
  35. 35.
    Wanner, C., Eggenberger, U., Mäder, U.: A chromate-contaminated site in southern Switzerland–part 2: reactive transport modeling to optimize remediation options. Appl. Geochem. 27(3), 655–662 (2012). doi: 10.1016/j.apgeochem.2011.11.008 CrossRefGoogle Scholar
  36. 36.
    Yeh, G., Tripathi, V.: A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components. Water Resour. Res. 25(1), 93–108 (1989). doi: 10.1029/WR025i001p00093 CrossRefGoogle Scholar
  37. 37.
    Walter, A., Frind, E., Blowes, D., Ptacek, C., Molson, J.: Modeling of multicomponent reactive transport in groundwater: 1. Model development and evaluation. Water Resour. Res. 30(11), 3137–3148 (1994). doi: 10.1029/94WR00955 CrossRefGoogle Scholar
  38. 38.
    Steefel, C.I., MacQuarrie, K.T.: Approaches to modeling of reactive transport in porous media. Rev. Mineral. Geochem. 34(1), 85–129 (1996)Google Scholar
  39. 39.
    Maxwell, R., Putti, M., Meyerhoff, S., Delfs, J.-O., Ferguson, I., Ivanov, V., Kim, J., Kolditz, O., Kollet, S., Kumar, M., Lopez, S., Niu, J., Paniconi, C., Park, Y.-J., Phanikumar, M., Shen, C., Sudicky, E., Sulis, M.: Surface-subsurface model intercomparison: a first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resour. Res. 50, 1531–1549 (2014). doi: 10.1002/2013WR013725 CrossRefGoogle Scholar
  40. 40.
    Reed, M.H.: Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase. Geochim. Cosmochim. Acta 46(4), 513–528 (1982). doi: 10.1016/0016-7037(82)90155-7 CrossRefGoogle Scholar
  41. 41.
    Kirkner, D.J., Reeves, H.: Multicomponent mass transport with homogeneous and heterogeneous chemical reactions: effect of the chemistry on the choice of numerical algorithm: 1. Theory. Water Resour. Res. 24(10), 1719–1729 (1988). doi: 10.1029/WR024i010p01719 CrossRefGoogle Scholar
  42. 42.
    Lasaga, A.C.: Rate laws of chemical reactions. Rev. Mineralology Geochemistry 8 (1981)Google Scholar
  43. 43.
    Lasaga, A.C.: Chemical kinetics of water-rock interactions. J. Geophys. Res. (Solid Earth) 89(B6), 4009–4025 (1984). doi: 10.1029/JB089iB06p04009 CrossRefGoogle Scholar
  44. 44.
    Aagaard, P., Helgeson, H.C.: Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions; I, theoretical considerations. Am. J. Sci. 282(3), 237–285 (1982)CrossRefGoogle Scholar
  45. 45.
    Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968). doi: 10.2475/ajs.282.3.237 CrossRefGoogle Scholar
  46. 46.
    Valocchi, A.J., Malmstead, M.: Accuracy of operator splitting for advection-dispersion-reaction problems. Water Resour. Res. 28(5), 1471–1476 (1992). doi: 10.1029/92WR00423 CrossRefGoogle Scholar
  47. 47.
    Kanney, J.F., Miller, C.T., Kelley, C.: Convergence of iterative split-operator approaches for approximating nonlinear reactive transport problems. Adv. Water Resour. 26(3), 247–261 (2003). doi: 10.1016/S0309-1708(02)00162-8 CrossRefGoogle Scholar
  48. 48.
    Navarre-Sitchler, A.K., Maxwell, R.M., Siirila, E.R., Hammond, G.E., Lichtner, P.C.: Elucidating geochemical response of shallow heterogeneous aquifers to CO2 leakage using high-performance computing: implications for monitoring of CO2 sequestration. Adv. Water Resour. 53, 45–55 (2013). doi: 10.1016/j.advwatres.2012.10.005 CrossRefGoogle Scholar
  49. 49.
    Hammond, G., Lichtner, P., Mills, R.: Evaluating the performance of parallel subsurface simulators: an illustrative example with PFLOTRAN. Water Resour. Res. (2014). doi: 10.1002/2012WR013483
  50. 50.
    Hammond, G.E., Lichtner, P.C.: Field-scale model for the natural attenuation of uranium at the Hanford 300 Area using high-performance computing. Water Resour. Res. 46(9) (2010). doi: 10.1029/2009WR008819
  51. 51.
    Hammond, G., Lichtner, P., Lu, C.: Subsurface multiphase flow and multicomponent reactive transport modeling using high-performance computing. In: Journal of Physics: Conference Series 2007, vol. 1, p 012025. IOP Publishing, doi: 10.1088/1742-6596/78/1/012025
  52. 52.
    Kollet, S.J., Maxwell, R.M., Woodward, C.S., Smith, S., Vanderborght, J., Vereecken, H., Simmer, C.: Proof of concept of regional scale hydrologic simulations at hydrologic resolution utilizing massively parallel computer resources. Water Resour. Res. 46(4) (2010). doi: 10.1029/2009WR008730
  53. 53.
    Maxwell, R.M.: A terrain-following grid transform and preconditioner for parallel, large-scale, integrated hydrologic modeling. Adv. Water Resour. 53, 109–117 (2013). doi: 10.1016/j.advwatres.2012.10.001 CrossRefGoogle Scholar
  54. 54.
    Knoll, D.A., Keyes, D.E.: Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004). doi: 10.1016/j.jcp.2003.08.010 CrossRefGoogle Scholar
  55. 55.
    Li, L., Steefel, C.I., Kowalsky, M.B., Englert, A., Hubbard, S.S.: Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during biostimulation experiments at Rifle, Colorado. J. Contam. Hydrol. 112(1), 45– 63 (2010). doi: 10.1016/j.jconhyd.2014.07.008 CrossRefGoogle Scholar
  56. 56.
    Hyun, S.P., Fox, P.M., Davis, J.A., Campbell, K.M., Hayes, K.F., Long, P.E.: Surface complexation modeling of U (VI) adsorption by aquifer sediments from a former mill tailings site at Rifle, Colorado. Environ. Sci. Technol. 43(24), 9368–9373 (2009). doi: 10.1021/es902164n CrossRefGoogle Scholar
  57. 57.
    N’Guessan, A.L., Vrionis, H.A., Resch, C.T., Long, P.E., Lovley, D.R.: Sustained removal of uranium from contaminated groundwater following stimulation of dissimilatory metal reduction. Environ. Sci. Technol. 42(8), 2999–3004 (2008). doi: 10.1021/es071960p CrossRefGoogle Scholar
  58. 58.
    Mouser, P.J., N’Guessan, A.L., Elifantz, H., Holmes, D.E., Williams, K.H., Wilkins, M.J., Long, P.E., Lovley, D.R.: Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater. Environ. Sci. Technol. 43(12), 4386–4392 (2009). doi: 10.1021/es8031055 CrossRefGoogle Scholar
  59. 59.
    Carle, S.F.: T-PROGS: Transition probability geostatistical software. University of California, Davis (1999)Google Scholar
  60. 60.
    Smith, M.S.: Dissimilatory reduction of NO2- to NH4 + and N2O by a soil Citrobacter sp. Appl. Environ. Microbiol. 43(4), 854–860 (1982)Google Scholar
  61. 61.
    Caskey, W.H., Tiedje, J.M.: Evidence for clostridia as agents of dissimilatory reduction of nitrate to ammonium in soils. Soil Sci. Soc. Am. J. 43(5), 931–936 (1979)CrossRefGoogle Scholar
  62. 62.
    Kaspar, H.F., Tiedje, J.M., Firestone, R.B.: Denitrification and dissimilatory nitrate reduction to ammonium in digested sludge. Can. J. Microbiol. 27(9), 878–885 (1981)CrossRefGoogle Scholar
  63. 63.
    Cirpka, O. A., Frind, E. O., Helmig, R.: Numerical simulation of biodegradation controlled by transverse mixing. J. Contam. Hydrol. 40(2), 159–182 (1999). doi: 10.1016/S0169-7722(99)00044-3 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • James J. Beisman
    • 1
  • Reed M. Maxwell
    • 1
  • Alexis K. Navarre-Sitchler
    • 1
  • Carl I. Steefel
    • 2
  • Sergi Molins
    • 2
  1. 1.Hydrologic Science and Engineering Program, Integrated GroundWater Modeling Center, Department of Geology and Geological EngineeringColorado School of MinesGoldenUSA
  2. 2.Earth Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations