Advertisement

Computational Geosciences

, Volume 19, Issue 2, pp 299–309 | Cite as

Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems

  • Iryna Rybak
  • Jim Magiera
  • Rainer Helmig
  • Christian Rohde
ORIGINAL PAPER

Abstract

A model formulation to describe fluid flows in coupled saturated/unsaturated porous medium and adjacent free flow regions is proposed. The Stokes equations are applied in the free flow domain, while the Richards equation is used to model the porous medium system. These two flow problems are coupled at the fluid-porous interface via an appropriate set of interface conditions. A multiple-time-step scheme is developed to solve the coupled problem efficiently. Numerical simulation results are presented for a model problem and a realistic setting that demonstrate the convergence and efficiency of the proposed computational algorithm. Time-splitting multistep methods can be successfully applied for modeling other physical systems where the processes evolve on different time scales, and these potential extensions are discussed.

Keywords

Free flow Porous medium Coupling Stokes equations Richards equation Interface conditions Multiple-time-step method 

Mathematics Subject Classification (2010)

65M99 76D07 76S05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alazmi, K., Vafai, B.: Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transfer. 44, 1735–1749 (2001)CrossRefGoogle Scholar
  2. 2.
    Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)CrossRefGoogle Scholar
  3. 3.
    Berninger, H., Ohlberger, M., Sander, O., Smetana, K.: Unsaturated subsurface flow with surface water and nonlinear in- and outflow conditions. Math. Models Methods Appl. Sci. 24, 901–936 (2014)CrossRefGoogle Scholar
  4. 4.
    Bukac̆, M., Yotov, I., Zakerzadeh, R., Zunino, P.: Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsches coupling approach. Comput. Methods Appl. Mech. Engrg. (in press)Google Scholar
  5. 5.
    Caiazzo, A., John, V., Wilbrandt, U.: On classical iterative subdomain methods for the Stokes–Darcy problem. Comput. Geosci. 18, 711–728 (2014)CrossRefGoogle Scholar
  6. 6.
    Cao, Y., Gunzburger, M., He, X., Wang, X.: Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes–Darcy systems. Math. Comput. 83, 1617–1644 (2014)CrossRefGoogle Scholar
  7. 7.
    Chen, W., Gunzburger, M., Sun, D., Wang, X.: Efficient and long-time accurate second-order methods for the Stokes–Darcy system. SIAM J. Numer. Anal. 51, 2563–2584 (2013)CrossRefGoogle Scholar
  8. 8.
    Çeşmelioğlu, A., Rivière, B.: Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow. J. Sci. Comput. 40, 115–140 (2009)CrossRefGoogle Scholar
  9. 9.
    Cimolin, F., Discacciati, M.: Navier–Stokes/Forchheimer models for filtration through porous media. Appl. Numer. Math. 72, 205–224 (2013)CrossRefGoogle Scholar
  10. 10.
    Dawson, C.: A continuous/discontinuous Galerkin framework for modeling coupled subsurface and surface water flow. Comput. Geosci. 12, 451–472 (2008)CrossRefGoogle Scholar
  11. 11.
    Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Num. Math. 43, 57–74 (2002)CrossRefGoogle Scholar
  12. 12.
    Discacciati, M., Quarteroni, A.: Navier–Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Rev. Mat. Complut. 22, 315–426 (2009)CrossRefGoogle Scholar
  13. 13.
    Feng, W., He, X., Wang, Z., Zhang, X.: Non-iterative domain decomposition methods for a non-stationary Stokes–Darcy model with Beavers–Joseph interface condition. Appl. Math. Comput. 219, 453–463 (2012)CrossRefGoogle Scholar
  14. 14.
    Hassanizadeh, M., Gray, W.: Boundary and interface conditions in porous media. Water Resour. Res. 25, 1705–1715 (1989)CrossRefGoogle Scholar
  15. 15.
    Heroux, M., Bartlett, R., Hoekstra, V., Hu, J., Kolda, T., Lehoucq, R., Long, K., Pawlowski, R., Phipps, E., Salinger, A., Thornquist, H., Tuminaro, R., Willenbring, J., Williams, A.: An overview of Trilinos. Tech. Rep. SAND2003-2927. Sandia National Laboratories (2003)Google Scholar
  16. 16.
    Jäger, W., Mikelić, A.: Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization. Transp. Porous Media 78, 489–508 (2009)CrossRefGoogle Scholar
  17. 17.
    Kollet, S., Maxwell, R.: Integrated surface–groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Adv. Water Res. 29, 945–958 (2006)CrossRefGoogle Scholar
  18. 18.
    Layton, W., Tran, H., Trenchea, C.: Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater - surface water flows. SIAM J. Numer. Anal. 51, 248–272 (2013)CrossRefGoogle Scholar
  19. 19.
    Layton, W., Tran, H., Xiong, X.: Long time stability of four methods for splitting the evolutionary Stokes–Darcy problem into Stokes and Darcy subproblems. J. Comput. Appl. Math. 236, 3198–3217 (2012)CrossRefGoogle Scholar
  20. 20.
    Levy, T., Sanchez-Palencia, E.: On boundary conditions for fluid flow in porous media. Internat. J. Engrg. Sci. 13, 923–940 (1975)CrossRefGoogle Scholar
  21. 21.
    Li, X.: An overview of SuperLU: algorithms, implementation, and user interface. ACM Trans. Math. Softw. 31, 302–325 (2005)CrossRefGoogle Scholar
  22. 22.
    Mosthaf, K., Baber, K., Flemisch, B., Helmig, R., Leijnse, A., Rybak, I., Wohlmuth, B.: A coupling concept for two-phase compositional porous-medium and single-phase compositional free flow. Water Resour. Res. 47, W10,522 (2011)Google Scholar
  23. 23.
    Mu, M., Zhu, X.: Decoupled schemes for a non-stationary mixed Stokes–Darcy model. Math. Comp. 79, 707–731 (2010)CrossRefGoogle Scholar
  24. 24.
    Ochoa-Tapia, A.J., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid. I: Theoretical development. Int. J. Heat Mass Transfer. 38, 2635–2646 (1995)CrossRefGoogle Scholar
  25. 25.
    Richards, L.: Capillary conduction of liquids through porous mediums. J. Appl. Phys. 1, 318–333 (1931)Google Scholar
  26. 26.
    Rivière, B., Yotov, I.: Locally conservative coupling of Stokes and Darcy flow. SIAM J. Numer. Anal. 42, 1959–1977 (2005)CrossRefGoogle Scholar
  27. 27.
    Rybak, I., Magiera, J.: A multiple-time-step technique for coupled free flow and porous medium systems. J. Comput. Phys. 272, 327–342 (2014)CrossRefGoogle Scholar
  28. 28.
    Rybak, I., Magiera, J.: Decoupled schemes for free flow and porous medium systems. In: Domain Decomposition Methods in Science and Engineering XXII. Springer (in press)Google Scholar
  29. 29.
    Saffman, R.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50, 93–101 (1971)Google Scholar
  30. 30.
    Shan, L., Zheng, H., Layton, W.: A decoupling method with different subdomain time steps for the nonstationary Stokes–Darcy model. Numer. Methods Partial Differ. Equ. 29, 549–583 (2013)CrossRefGoogle Scholar
  31. 31.
    Shavit, U.: Special issue on transport phenomena at the interface between fluid and porous domains. Transp. Porous Media 78, 327–330 (2009)CrossRefGoogle Scholar
  32. 32.
    Sochala, P., Ern, A., Piperno, S.: Mass conservative BDF-discontinuous Galerkin/explicit finite volume schemes for coupling subsurface and overland flows. Comput. Methods Appl. Mech. Engrg. 198, 2122–2136 (2009)CrossRefGoogle Scholar
  33. 33.
    Sulis, M., Meyerhoff, S., Paniconi, C., Maxwell, R., Putti, M., Kollet, S.: A comparison of two physics-based numerical models for simulating surface water–groundwater interactions. Adv. Water Res. 33, 456–467 (2010)CrossRefGoogle Scholar
  34. 34.
    Vassilev, D., Yotov, I.: Coupling Stokes–Darcy flow with transport. SIAM J. Sci. Comput. 31, 3661–3684 (2009)CrossRefGoogle Scholar
  35. 35.
    Versteeg, H., Malalasekra, W. An introduction to computational fluid dynamics: The finite volume method. Prentice Hall (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Iryna Rybak
    • 1
  • Jim Magiera
    • 1
  • Rainer Helmig
    • 1
  • Christian Rohde
    • 2
  1. 1.Institute of Applied Analysis and Numerical SimulationUniversity of StuttgartStuttgartGermany
  2. 2.Institute for Modelling Hydraulic and Environmental SystemsUniversity of StuttgartStuttgartGermany

Personalised recommendations