Skip to main content
Log in

Decalcification of cracked cement structures

  • Published:
Computational Geosciences Aims and scope Submit manuscript


The benchmark problem presented in this paper deals with the leaching of calcium from hardened cement paste. The leaching of calcium results in the dissolution of the cement minerals which affects physical, chemical and mechanical properties of porous cement matrix. The dissolution of cement minerals in this case progresses heterogeneously as a consequence of a small-scale geometrical feature (crack) within a domain. Complexity of transport through cracked porous media combined with complex cement chemistry can lead to considerable modelling uncertainties. One possible way to get an insight into the robustness of modelling results is to perform benchmark based on (i) different transport models and solution methods (finite volume, finite element, etc.), (ii) different geochemical solvers and (iii) different coupling algorithms (sequential iterative and non-iterative). This benchmark is designed to gradually increase the complexity of the problem and in this way recognize modelling elements that are the most sensitive in terms of modelling results, e.g. evolution of physical and chemical properties. Five international teams participated in this benchmark exercise. The reactive transport codes used (HYTEC, MIN3P, OGS-GEM, ORCHESTRA, COMSOL Multiphysics-iPHREEQC) give similar patterns in terms of predicted concentrations of elements and the mineralogy. The level of agreement depends on the problem complexity related mainly to the weighting and conservation properties of different numerical methods, to the coupling between transport and reactive solver and the agreement of thermodynamic database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Glasser, F.P., Marchand, J., Samson, E.: Durability of concrete – degradation phenomena involving detrimental chemical reactions. Cem. Concr. Res. 38, 226–246 (2008)

    Article  Google Scholar 

  2. Jacques, D., Wang, L., Martens, E., Mallants, D.: Modelling chemical degradation of concrete during leaching with rain and soil water types. Cem. Concr. Res. 40, 1306–1313 (2010)

    Article  Google Scholar 

  3. De Windt, L., Badreddine, R., Lagneau, V.: Long-term reactive transport modelling of stabilized/solidified waste: from dynamic leaching tests to disposal scenarios. J. Hazard. Mater. B139, 529–56 (2007)

    Article  Google Scholar 

  4. Bejaoui, S., Sercombe, J., Mugler, C., Peycelon, H.: Modelling of radionuclide release from a concrete container. Transp. Porous Med. 69, 89–107 (2007)

    Article  Google Scholar 

  5. Seetharam, S.C., Perko, J., Jacques, D., Mallants, D.: Influence of fracture networks on radionuclide transport from solidified waste forms. Nucl. Eng. Des. 270, 162–175 (2014)

    Article  Google Scholar 

  6. Haga, K., Sutou, S., Hironaga, M., Tanaka, S., Nagasaki, S.: Effects of porosity on leaching of Ca from hardened ordinary Portland cement paste. Cem. Concr. Res. 35(9), 1764–1775 (2005)

    Article  Google Scholar 

  7. Jacques, D., Šimu̇nek, J., Mallants, D., van Genuchten, M., Yu, L.: A coupled reactive transport model for contaminant leaching from cementitious waste matrices accounting for solid phase alterations. In: Cossu, R., He, P., Kjeldsen, P., Matsufuji, Y., Reinhart, D., Stegmann, R. (eds.) Proceedings of the 13th International Waste Management and Landfill Symposium, pp. 3–7. Cagliari, Sardinia (2011)

  8. Jacques, D., Perko, J., Seetharam, S.C., Mallants, D.: A cement degradation model for evaluating the evolution of retardation factors in radionuclide leaching models. Appl. Geochem. 49, 143–158 (2014)

    Article  Google Scholar 

  9. Walton, J.C.: Performance of intact and partially degraded concrete barriers in limiting mass transport. NUREG/CR-5445; EGG-2662 (1992)

  10. Walton, J.C., Seitz, R.R.: Fluid flow through fractures in below ground concrete vaults. Waste Manag. 12, 179–187 (1992)

    Article  Google Scholar 

  11. Perko, J., Seetharam, S., Mallants, D.: Verification and validation of flow and transport in cracked saturated porous media. In: COMSOL Conference CD - Proceedings from Fall 2011 Events, Stuttgart, Germany, 26-28 October 2011, Sweden, COMSOL AB (2011)

  12. Parkhurst, D.L., Appelo, C.A.J.: User’s guide to PHREEQC (version 2)—a computer program for speciation, reaction-path, 1D-transport, and inverse geochemical calculations. US Geol. Surv. Water Resour. Inv. Rep. 312, 99–4259 (1999)

    Google Scholar 

  13. van der Lee, J., De Windt, L., Lagneau, V., Goblet, P.: Module-oriented modeling of reactive transport with HYTEC. Comput. Geosci. 29, 265–275 (2003)

    Article  Google Scholar 

  14. Mayer, K.U., Frind, E.O., Blowes, D.W.: Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour. Res., 38 (2002)

  15. Kulik, D.A., Wagner, T., Dmytrieva, S.V., Kosakowski, G., Hingerl, F.F., Chudnenko, K.V., Berner, U.: GEM-Selektor geochemical modeling package: Numerical kernel GEMS3K for coupled simulation codes. Comput. Geosci. 17, 1–24 (2013)

    Google Scholar 

  16. Meeussen, J.C.L.: ORCHESTRA: An object-oriented framework for implementing chemical equilibrium models. Environ Sci. Technol. 37, 1175–1182 (2003)

    Article  Google Scholar 

  17. Comsol Multiphysics: User’s guide (2008)

  18. Wissmeier, L., Barry, D.A.: Implementation of variably saturated flow into PHREEQC for the simulation of biogeochemical reactions in the vadose zone. Environ. Model. Softw. 25(4), 526–538 (2010)

    Article  Google Scholar 

  19. Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J., Fischer, T., Görke, U., Kalbacher, T., Kosakowski, G., McDermott, C., Park, C., Radu, F., Rink, K., Shao, H., Shao, H., Sun, F., Sun, Y., Singh, A., Taron, J., Walther, M., Wang, W., Watanabe, N., Wu, Y., Xie, M., Xu, W., Zehner, B.: OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ. Earth Sci., 67 (2012)

  20. Lothenbach, B., Matschei, T., Möschner, G., Glasser, F.P.: Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cem. Concr. Res. 38(1), 1–18 (2008)

    Article  Google Scholar 

  21. Bartier, D., Techer, I., Dauzères, A., Boulvais, P., Blanc-Valleron, M.M., Cabrera, J.: In situ investigations and reactive transport modelling of cement paste/argillite interactions in a saturated context and outside an excavated disturbed zone. Appl. Geochem. 31, 94–108 (2013)

    Article  Google Scholar 

  22. Steefel, C.I., Appelo, C.A.J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Lichtner, P.C., Mayer, K.U., Meeussen, J.C.L., Molins, S., Moulton, D., Shao, H., Šimu̇nek, J., Spycher, N., Yabusaki, S.B., Yeh, G.T.: Reactive transport codes for subsurface environmental simulation. Comput. Geosci. (2014). doi:10.1007/s10596-014-9443-x

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Janez Perko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perko, J., Mayer, K.U., Kosakowski, G. et al. Decalcification of cracked cement structures. Comput Geosci 19, 673–693 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: