Benchmarks for multicomponent reactive transport across a cement/clay interface


The use of the subsurface for CO2 storage, geothermal energy generation, and nuclear waste disposal will greatly increase the interaction between clay(stone) and concrete. The development of models describing the mineralogical transformations at this interface is complicated, because contrasting geochemical conditions (Eh, pH, solution composition, etc.) induce steep concentration gradients and a high mineral reactivity. Due to the complexity of the problem, analytical solutions are not available to verify code accuracy, rendering code intercomparisons as the most efficient method for assessing code capabilities and for building confidence in the used model. A benchmark problem was established for tackling this issue. We summarize three scenarios with increasing geochemical complexity in this paper. The processes considered in the simulations are diffusion-controlled transport in saturated media under isothermal conditions, cation exchange reactions, and both local equilibrium and kinetically controlled mineral dissolution-precipitation reactions. No update of the pore diffusion coefficient as a function of porosity changes was considered. Seven international teams participated in this benchmarking exercise. The reactive transport codes used (TOUGHREACT, PHREEQC, with two different ways of handling transport, CRUNCH, HYTEC, ORCHESTRA, MIN3P-THCm) gave very similar patterns in terms of predicted solute concentrations and mineral distributions. Some differences linked to the considered activity models were observed, but they do not bias the general system evolution. The benchmarking exercise thus demonstrates that a reactive transport modelling specification for long-term performance assessment can be consistently addressed by multiple simulators.

This is a preview of subscription content, access via your institution.


  1. 1.

    Landais, P.: Advances in geochemical research for the underground disposal of high-level, long-lived radioactive waste in a clay formation. J. Geochem. Explor. 88(1–3), 32–36 (2006). doi:10.1016/j.gexplo.2005.08.011

    Article  Google Scholar 

  2. 2.

    Gaucher, E.C., Blanc, P.: Cement/clay interactions - a review: experiments, natural analogues, and modeling. Waste Manag. 26 (7), 776–788 (2006)

    Article  Google Scholar 

  3. 3.

    Savage, D., Walker, C., Arthur, R., Rochelle, C., Oda, C., Takase, H.: Alteration of bentonite by hyperalkaline fluids: a review of the role of secondary minerals. Phys. Chem. Earth Parts A/B/C 32 (1–7), 287–297 (2007). doi:10.1016/j.pce.2005.08.048

    Article  Google Scholar 

  4. 4.

    Savage, D.: A review of analogues of alkaline alteration with regard to long-term barrier performance. Mineral. Mag. 75 (4), 2401–2418 (2011). doi:10.1180/minmag.2011.075.4.2401

    Article  Google Scholar 

  5. 5.

    Marty, N.M., Munier, I., Gaucher, E., Tournassat, C., Gaboreau, S., Vong, C., Giffaut, E., Cochepin, B., Claret, F.: Simulation of Cement/clay interactions: feedback on the increasing complexity of modelling strategies. Transp. Porous Med., 1–21 (2014). doi:10.1007/s11242-014-0340-5

  6. 6.

    Adler, M., Mader, U.K., Waber, H.N.: High-pH alteration of argillaceous rocks: an experimental study. Schweiz. Mineral. Petrogr. Mitt. 79(3), 445–454 (1999). citeulike-article-id:8718542

    Google Scholar 

  7. 7.

    Gaucher, E.C., Blanc, P., Matray, J.-M., Michau, N.: Modeling diffusion of an alkaline plume in a clay barrier. Appl. Geochem. 19(10), 1505–1515 (2004). doi:10.1016/j.apgeochem.2004.03.007

    Article  Google Scholar 

  8. 8.

    Trotignon, L., Peycelon, H., Bourbon, X.: Comparison of performance of concrete barriers in a clayey geological medium. Phys. Chem. Earth, Parts A/B/C 31(10–14), 610–617 (2006). doi:10.1016/j.pce.2006.04.011

    Article  Google Scholar 

  9. 9.

    Wang, L., Jacques, D., De Cannière, P.: Effects of an alkaline plume on the boom clay as a potential host formation for geological disposal of radioactive waste. In. - 2 ed.- Mol, Belgium: SCK⋅CEN, 2010.- 194 p.- (External Report of the Belgian Nuclear Research Centre; ER-28; CCHO 2000-773/00/00).- ISSN 1782-2335 (2010)

  10. 10.

    De Windt, L., Marsal, F., Tinseau, E., Pellegrini, D.: Reactive transport modeling of geochemical interactions at a concrete/argillite interface, Tournemire site (France). Phys. Chem. Earth 33, S295–S305 (2008)

    Article  Google Scholar 

  11. 11.

    De Windt, L., Pellegrini, D., van der Lee, J.: Coupled modeling of cement/claystone interactions and radionuclide migration. J. Contam. Hydrol. 68(3–4), 165–182 (2004). doi:10.1016/S0169-7722(03)00148-7

    Article  Google Scholar 

  12. 12.

    Fernandez, R., Cuevas, J., Mader, U.K.: Modeling experimental results of diffusion of alkaline solutions through a compacted bentonite barrier. Cem. Concr. Res. 40 (8), 1255–1264 (2010). doi:10.1016/j.cemconres.2009.09.011

    Article  Google Scholar 

  13. 13.

    Marty, N.C.M., Tournassat, C., Burnol, A., Giffaut, E., Gaucher, E.C.: Influence of reaction kinetics and mesh refinement on the numerical modelling of concrete/clay interactions. J. Hydrol. 364(1–2), 58–72 (2009)

    Article  Google Scholar 

  14. 14.

    Savage, D., Benbow, S., Watson, C., Takase, H., Ono, K., Oda, C., Honda, A.: Natural systems evidence for the alteration of clay under alkaline conditions: an example from Searles Lake, California. Appl. Clay Sci. 47(1–2), 72–81 (2010). doi:10.1016/j.clay.2009.08.024

    Article  Google Scholar 

  15. 15.

    Savage, D., Noy, D., Mihara, M.: Modelling the interaction of bentonite with hyperalkaline fluids. Appl. Geochem. 17(3), 207–223 (2002). doi:10.1016/s0883-2927(01)00078-6

    Article  Google Scholar 

  16. 16.

    Soler, J.M.: Reactive transport modeling of the interaction between a high-pH plume and a fractured marl: the case of Wellenberg. Appl. Geochem. 18(10), 1555–1571 (2003). doi:10.1016/S0883-2927(03)00048-9

    Article  Google Scholar 

  17. 17.

    Soler, J.M., Vuorio, M., Hautojarvi, A.: Reactive transport modeling of the interaction between water and a cementitious grout in a fractured rock. Application to ONKALO (Finland). Appl. Geochem. 26(7), 1115–1129 (2011). doi:10.1016/j.apgeochem.2011.04.001

    Article  Google Scholar 

  18. 18.

    Steefel, C.I., Lichtner, P.C.: Diffusion and reaction in rock matrix bordering a hyperalkaline fluid-filled fracture. Geochim. Cosmochim. Acta 58(17), 3595–3612 (1994). doi:10.1016/0016-7037(94)90152-x

    Article  Google Scholar 

  19. 19.

    Steefel, C.I., Lichtner, P.C.: Multicomponent reactive transport in discrete fractures - II: infiltration of hyperalkaline groundwater at Maqarin, Jordan, a natural analogue site. J. Hydrol. 209(1–4), 200–224 (1998). doi:10.1016/s0022-1694(98)00173-5

    Article  Google Scholar 

  20. 20.

    Trotignon, L., Devallois, V., Peycelon, H., Tiffreau, C., Bourbon, X.: Predicting the long term durability of concrete engineered barriers in a geological repository for radioactive waste. Phys. Chem. Earth 32(1–7), 259–274 (2007)

    Article  Google Scholar 

  21. 21.

    Vieillard, P., Ramirez, S., Bouchet, A., Cassagnabere, A., Meunier, A., Jacquot, E.: Alteration of the Callow-Oxfordian clay from Meuse-Haute Marne Underground Laboratory (France) by alkaline solution: II. Modelling of mineral reactions. Appl. Geochem. 19(11), 1699–1709 (2004). doi:10.1016/j.apgeochem.2004.03.010

    Article  Google Scholar 

  22. 22.

    Watson, C., Hane, K., Savage, D., Benbow, S., Cuevas, J., Fernandez, R.: Reaction and diffusion of cementitious water in bentonite: results of ‘blind’ modelling. Appl. Clay Sci. 45 (1–2), 54–69 (2009). doi:10.1016/j.clay.2009.03.007

    Article  Google Scholar 

  23. 23.

    Xu, T., Sonnenthal, E., Spycher, N., Pruess, K.: TOUGHREACT—a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration. Comput. Geosci. 32 (2), 145–165 (2006). doi:10.1016/j.cageo.2005.06.014

    Article  Google Scholar 

  24. 24.

    Xu, T., Spycher, N., Sonnenthal, E., Zhang, G., Zheng, L., Pruess, K.: TOUGHREACT Version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Comput. Geosci. 37(6), 763–774 (2011). doi:10.1016/j.cageo.2010.10.007

    Article  Google Scholar 

  25. 25.

    Parkhurst, D.L., Appelo, C.A.J.: User’s guide to PHREEQC (version 2)—a computer program for speciation, reaction-path, 1D-transport, and inverse geochemical calculations. US Geol. Surv. Water Resour. Inv. Rep. 99-4259, 312p. In. (1999)

  26. 26.

    Steefel, C.I., Yabusaki, S.B.: OS3D/GIMRT. Software for Modeling Muticomponent-Multidimensional Reactive Transport. User Manual & Programmer’s guide. In., vol. PNNL-11166. (1996)

  27. 27.

    van der Lee, J., Lagneau, V.: Rigorous methods for reactive transport in unsaturated porous medium coupled with chemistry and variable porosity. Dev. Water Sci. 55, 861–868 (2004)

    Article  Google Scholar 

  28. 28.

    van der Lee, J., De Windt, L., Lagneau, V., Goblet, P.: Module-oriented modeling of reactive transport with HYTEC. Comput. Geosci. 29(3), 265–275 (2003). doi:10.1016/S0098-3004(03)00004-9

    Article  Google Scholar 

  29. 29.

    van der Lee, J., De Windt, L., Lagneau, V., Goblet, P.: Presentation and application of the reactive transport code HYTEC. Computational Methods in Water Resources, vols 1 and 2. Proceedings 47, 599–606 (2002)

    Google Scholar 

  30. 30.

    Meeussen, J.C.L.: ORCHESTRA: an object-oriented framework for implementing chemical equilibrium models. Environ. Sci. Technol. 37(6), 1175–1182 (2003). doi:10.1021/es.025597s

    Article  Google Scholar 

  31. 31.

    Mayer, K.U., Frind, E.O., Blowes, D.W.: Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour. Res. 38(9) (2002). doi:10.1029/2001wr000862

  32. 32.

    Steefel, C.I., Mayer, K.U., Arora, B., Appelo, C.A.J., Hammond, G., Jacques, D., Kolditz, O., Lagneau, V., Lichtner, P.C., Meussen, H., Molins, S., Parkhurst, D.L., Shao, H., Simunek, J., Van der Lee, J., Yabusaki, S.B., Yeh, G.T.: Reactive transport codes for subsurface environmental simulation. Comput. Geosci. (2014). doi:10.1007/s10596-014-9443-x

  33. 33.

    Gherardi, F., Audigane, P., Gaucher, E.C.: Predicting long-term geochemical alteration of wellbore cement in a generic geological CO2 confinement site: tackling a difficult reactive transport modeling challenge. J. Hydrol. 420, 340–359 (2012). doi:10.1016/j.jhydrol.2011.12.026

    Article  Google Scholar 

  34. 34.

    Gaboreau, S., Lerouge, C., Dewonck, S., Linard, Y., Bourbon, X., Fialips, C.I., Mazurier, A., Prêt, D., Borschneck, D., Montouillout, V., Gaucher, E.C., Claret, F.: In-situ interaction of cement paste and shotcrete with claystones in a deep disposal context. Am. J. Sci. 312(3), 314–356 (2012). doi:10.2475/03.2012.03

    Article  Google Scholar 

  35. 35.

    Blanc, P., Bourbon, X., Lassin, A., Gaucher, E.C.: Chemical model for cement-based materials: Temperature dependence of thermodynamic functions for nanocrystalline and crystalline C-S-H phases. Cem. Concr. Res. 40(6), 851–866 (2010)

    Article  Google Scholar 

  36. 36.

    Blanc, P., Bourbon, X., Lassin, A., Gaucher, E.C.: Chemical model for cement-based materials: thermodynamic data assessment for phases other than C-S-H. Cem. Concr. Res. 40(9), 1360–1374 (2010)

    Article  Google Scholar 

  37. 37.

    Burnol, A., Blanc, P., Xu, T., Spycher, N., Gaucher, E.C.: Uncertainty in the reactive transport model response to an alkaline perturbation in a clay formation. In: Laboratory, L.B.N. (ed.) T O U G H Symposium 2006. Berkeley (2006)

  38. 38.

    Delay, J., Rebours, H., Vinsot, A., Robin, P.: Scientific investigation in deep wells for nuclear waste disposal studies at the Meuse/Haute Marne underground research laboratory, Northeastern France. Phys. Chem. Earth 32(1–7), 42–57 (2007)

    Article  Google Scholar 

  39. 39.

    Gaucher, E.C., Tournassat, C., Pearson, F.J., Blanc, P., Crouzet, C., Lerouge, C., Altmann, S.: A robust model for pore-water chemistry of clayrock. Geochim. Cosmochim. Acta 73(21), 6470–6487 (2009). doi:10.1016/j.gca.2009.07.021

    Article  Google Scholar 

  40. 40.

    Lerouge, C., Michel, P., Gaucher, E.C., Tournassat, C.: A geological, mineralogical and geochemical GIS for the Andra URL: a tool for the water-rock interactions modelling at a regional scale. In: SKB (ed.) Technical Report TR-07-05 ( FUNMIG - 2nd annual workshop, Stockholm, Sweden (2006)

  41. 41.

    Claret, F., Lerouge, C., Laurioux, T., Bizi, M., Conte, T., Ghestem, J.P., Wille, G., Sato, T., Gaucher, E.C., Giffaut, E., Tournassat, C.: Natural iodine in a clay formation: implications for iodine fate in geological disposals. Geochim. Cosmochim. Acta 74(1), 16–29 (2010). doi:10.1016/j.gca.2009.09.030

    Article  Google Scholar 

  42. 42.

    Tournassat, C., Gailhanou, H., Crouzet, C., Braibant, G., Gautier, A., Lassin, A., Blanc, P., Gaucher, E.C.: Two cation exchange models for direct and inverse modelling of solution major cation composition in equilibrium with illite surfaces. Geochim. Cosmochim. Acta 71(5), 1098–1114 (2007)

    Article  Google Scholar 

  43. 43.

    Tournassat, C., Gailhanou, H., Crouzet, C., Braibant, G., Gautier, A., Gaucher, E.C.: Cation exchange selectivity coefficient values on smectite and mixed-layer illite/smectite minerals. Soil Sci. Soc. Am. J. 73(3), 928–942 (2009)

    Article  Google Scholar 

  44. 44.

    Vinsot, A., Mettler, S., Wechner, S.: In situ characterization of the Callovo-Oxfordian pore water composition. Phys. Chem. Earth 33, S75–S86 (2008)

    Article  Google Scholar 

  45. 45.

    Blanc, P., Lassin, A., Piantone, P., Azaroual, M., Jacquemet, N., Fabbri, A., Gaucher, E.C.: Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials. Appl. Geochem. 27(10), 2107–2116 (2012). doi:10.1016/j.apgeochem.2012.06.002

    Article  Google Scholar 

  46. 46.

    Helgeson, H.C., Kirkham, D.H., Flowers, G.C.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb. Am. J. Sci. 281(10), 1249–1516 (1981). doi:10.2475/ajs.281.10.1249

    Article  Google Scholar 

  47. 47.

    Allison, J.D., Brown, D.S., Novo-Gradac, K.J.: MINTEQA2/ PRODEFA2, A Geographical Assessment Model For Environmental Systems: Version 3.0 User’s Manual. In. EPA/600/3-91/021, Environmental Research Laboratory, United States Environmental Protection Agency, available at (1991)

  48. 48.

    Lasaga, A.C., Soler, J.M., Ganor, J., Burch, T.E., Nagy, K.L.: Chemical weathering rate laws and global geochemical cycles. Geochim. Cosmochim. Acta 58(10), 2361–2386 (1994). doi:10.1016/0016-7037(94)90016-7

    Article  Google Scholar 

  49. 49.

    Marty, N.C.M., Claret, F., Lassin, A., Tremosa, J., Blanc, P., Madé, B., Giffaut, E., Cochepin, B., Tournassat, C.: A database of dissolution and precipitation rates for clay-rocks minerals. Appl. Geochem. (2014). doi:10.1016/j.apgeochem.2014.10.012

    Google Scholar 

  50. 50.

    Gaines, J.G.L., Thomas, H.C.: Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption. J. Chem. Phys. 21(4), 714–718 (1953)

    Article  Google Scholar 

  51. 51.

    Sposito, G.: The thermodynamics of soil solution. Oxford University Press, New York (1981)

    Google Scholar 

  52. 52.

    Velbel, M.A.: Influence of temperature and mineral surface characteristics on feldspar weathering rates in natural and artificial systems: a first approximation. Water Resour. Res. 26(12), 3049–3053 (1990). doi:10.1029/WR026i012p03049

    Google Scholar 

  53. 53.

    White, A.F., Brantley, S.L.: The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chem. Geol. 202(3–4), 479–506 (2003). doi:10.1016/j.chemgeo.2003.03.001

    Article  Google Scholar 

  54. 54.

    Zhu, C.: In situ feldspar dissolution rates in an aquifer. Geochim. Cosmochim. Acta 69(6), 1435–1453 (2005). doi:10.1016/j.gca.2004.09.005

    Article  Google Scholar 

  55. 55.

    Xie, M., Mayer, K.U., Claret, F., Alt-Epping, P., Jacques, D., Steefel, C., Chiaberge, C., Simunek, J.: Implementation and evaluation of permeability-porosity and tortuosity-porosity relationships linked to mineral dissolution-precipitation. Comput. Geosci. (2014). doi:10.1007/s10596-014-9458-3

  56. 56.

    Vinsot, A., Mettler, S., Wechner, S.: In situ characterization of the Callovo-Oxfordian pore water composition. Phys. Chem. Earth, Parts A/B/C 33 Supplement 1(0), S75–S86 (2008). doi:10.1016/j.pce.2008.10.048

    Article  Google Scholar 

  57. 57.

    Xu, T., Sonnenthal, E., Spycher, N., Pruess, K.: TOUGHREACT User’s guide: a simulation program for non-isothermal multiphase reactive geochemical transport in variable saturated geologic media. In. Lawrence Berkeley National Laboratory, available at (2004)

Download references

Author information



Corresponding author

Correspondence to Francis Claret.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 115 KB)

(PDF 115 KB)

(DOCX 24.9 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marty, N.C.M., Bildstein, O., Blanc, P. et al. Benchmarks for multicomponent reactive transport across a cement/clay interface. Comput Geosci 19, 635–653 (2015).

Download citation


  • Benchmark
  • Cement
  • Callovian-Oxfordian claystone
  • MIN3P