Computational Geosciences

, Volume 19, Issue 3, pp 635–653 | Cite as

Benchmarks for multicomponent reactive transport across a cement/clay interface

  • Nicolas C. M. Marty
  • Olivier Bildstein
  • Philippe Blanc
  • Francis Claret
  • Benoit Cochepin
  • Eric C. Gaucher
  • Diederik Jacques
  • Jean-Eric Lartigue
  • Sanheng Liu
  • K. Ulrich Mayer
  • Johannes C. L. Meeussen
  • Isabelle Munier
  • Ingmar Pointeau
  • Danyang Su
  • Carl I. Steefel


The use of the subsurface for CO2 storage, geothermal energy generation, and nuclear waste disposal will greatly increase the interaction between clay(stone) and concrete. The development of models describing the mineralogical transformations at this interface is complicated, because contrasting geochemical conditions (Eh, pH, solution composition, etc.) induce steep concentration gradients and a high mineral reactivity. Due to the complexity of the problem, analytical solutions are not available to verify code accuracy, rendering code intercomparisons as the most efficient method for assessing code capabilities and for building confidence in the used model. A benchmark problem was established for tackling this issue. We summarize three scenarios with increasing geochemical complexity in this paper. The processes considered in the simulations are diffusion-controlled transport in saturated media under isothermal conditions, cation exchange reactions, and both local equilibrium and kinetically controlled mineral dissolution-precipitation reactions. No update of the pore diffusion coefficient as a function of porosity changes was considered. Seven international teams participated in this benchmarking exercise. The reactive transport codes used (TOUGHREACT, PHREEQC, with two different ways of handling transport, CRUNCH, HYTEC, ORCHESTRA, MIN3P-THCm) gave very similar patterns in terms of predicted solute concentrations and mineral distributions. Some differences linked to the considered activity models were observed, but they do not bias the general system evolution. The benchmarking exercise thus demonstrates that a reactive transport modelling specification for long-term performance assessment can be consistently addressed by multiple simulators.


Benchmark Cement Callovian-Oxfordian claystone TOUGHREACT PHREEQC CRUNCH HYTEC ORCHESTRA MIN3P 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10596_2014_9463_MOESM1_ESM.pdf (115 kb)
(PDF 115 KB)
10596_2014_9463_MOESM2_ESM.pdf (116 kb)
(PDF 115 KB)
10596_2014_9463_MOESM3_ESM.docx (25 kb)
(DOCX 24.9 KB)


  1. 1.
    Landais, P.: Advances in geochemical research for the underground disposal of high-level, long-lived radioactive waste in a clay formation. J. Geochem. Explor. 88(1–3), 32–36 (2006). doi: 10.1016/j.gexplo.2005.08.011 CrossRefGoogle Scholar
  2. 2.
    Gaucher, E.C., Blanc, P.: Cement/clay interactions - a review: experiments, natural analogues, and modeling. Waste Manag. 26 (7), 776–788 (2006)CrossRefGoogle Scholar
  3. 3.
    Savage, D., Walker, C., Arthur, R., Rochelle, C., Oda, C., Takase, H.: Alteration of bentonite by hyperalkaline fluids: a review of the role of secondary minerals. Phys. Chem. Earth Parts A/B/C 32 (1–7), 287–297 (2007). doi: 10.1016/j.pce.2005.08.048 CrossRefGoogle Scholar
  4. 4.
    Savage, D.: A review of analogues of alkaline alteration with regard to long-term barrier performance. Mineral. Mag. 75 (4), 2401–2418 (2011). doi: 10.1180/minmag.2011.075.4.2401 CrossRefGoogle Scholar
  5. 5.
    Marty, N.M., Munier, I., Gaucher, E., Tournassat, C., Gaboreau, S., Vong, C., Giffaut, E., Cochepin, B., Claret, F.: Simulation of Cement/clay interactions: feedback on the increasing complexity of modelling strategies. Transp. Porous Med., 1–21 (2014). doi: 10.1007/s11242-014-0340-5
  6. 6.
    Adler, M., Mader, U.K., Waber, H.N.: High-pH alteration of argillaceous rocks: an experimental study. Schweiz. Mineral. Petrogr. Mitt. 79(3), 445–454 (1999). citeulike-article-id:8718542 Google Scholar
  7. 7.
    Gaucher, E.C., Blanc, P., Matray, J.-M., Michau, N.: Modeling diffusion of an alkaline plume in a clay barrier. Appl. Geochem. 19(10), 1505–1515 (2004). doi: 10.1016/j.apgeochem.2004.03.007 CrossRefGoogle Scholar
  8. 8.
    Trotignon, L., Peycelon, H., Bourbon, X.: Comparison of performance of concrete barriers in a clayey geological medium. Phys. Chem. Earth, Parts A/B/C 31(10–14), 610–617 (2006). doi: 10.1016/j.pce.2006.04.011 CrossRefGoogle Scholar
  9. 9.
    Wang, L., Jacques, D., De Cannière, P.: Effects of an alkaline plume on the boom clay as a potential host formation for geological disposal of radioactive waste. In. - 2 ed.- Mol, Belgium: SCK⋅CEN, 2010.- 194 p.- (External Report of the Belgian Nuclear Research Centre; ER-28; CCHO 2000-773/00/00).- ISSN 1782-2335 (2010)Google Scholar
  10. 10.
    De Windt, L., Marsal, F., Tinseau, E., Pellegrini, D.: Reactive transport modeling of geochemical interactions at a concrete/argillite interface, Tournemire site (France). Phys. Chem. Earth 33, S295–S305 (2008)CrossRefGoogle Scholar
  11. 11.
    De Windt, L., Pellegrini, D., van der Lee, J.: Coupled modeling of cement/claystone interactions and radionuclide migration. J. Contam. Hydrol. 68(3–4), 165–182 (2004). doi: 10.1016/S0169-7722(03)00148-7 CrossRefGoogle Scholar
  12. 12.
    Fernandez, R., Cuevas, J., Mader, U.K.: Modeling experimental results of diffusion of alkaline solutions through a compacted bentonite barrier. Cem. Concr. Res. 40 (8), 1255–1264 (2010). doi: 10.1016/j.cemconres.2009.09.011 CrossRefGoogle Scholar
  13. 13.
    Marty, N.C.M., Tournassat, C., Burnol, A., Giffaut, E., Gaucher, E.C.: Influence of reaction kinetics and mesh refinement on the numerical modelling of concrete/clay interactions. J. Hydrol. 364(1–2), 58–72 (2009)CrossRefGoogle Scholar
  14. 14.
    Savage, D., Benbow, S., Watson, C., Takase, H., Ono, K., Oda, C., Honda, A.: Natural systems evidence for the alteration of clay under alkaline conditions: an example from Searles Lake, California. Appl. Clay Sci. 47(1–2), 72–81 (2010). doi: 10.1016/j.clay.2009.08.024 CrossRefGoogle Scholar
  15. 15.
    Savage, D., Noy, D., Mihara, M.: Modelling the interaction of bentonite with hyperalkaline fluids. Appl. Geochem. 17(3), 207–223 (2002). doi: 10.1016/s0883-2927(01)00078-6 CrossRefGoogle Scholar
  16. 16.
    Soler, J.M.: Reactive transport modeling of the interaction between a high-pH plume and a fractured marl: the case of Wellenberg. Appl. Geochem. 18(10), 1555–1571 (2003). doi: 10.1016/S0883-2927(03)00048-9 CrossRefGoogle Scholar
  17. 17.
    Soler, J.M., Vuorio, M., Hautojarvi, A.: Reactive transport modeling of the interaction between water and a cementitious grout in a fractured rock. Application to ONKALO (Finland). Appl. Geochem. 26(7), 1115–1129 (2011). doi: 10.1016/j.apgeochem.2011.04.001 CrossRefGoogle Scholar
  18. 18.
    Steefel, C.I., Lichtner, P.C.: Diffusion and reaction in rock matrix bordering a hyperalkaline fluid-filled fracture. Geochim. Cosmochim. Acta 58(17), 3595–3612 (1994). doi: 10.1016/0016-7037(94)90152-x CrossRefGoogle Scholar
  19. 19.
    Steefel, C.I., Lichtner, P.C.: Multicomponent reactive transport in discrete fractures - II: infiltration of hyperalkaline groundwater at Maqarin, Jordan, a natural analogue site. J. Hydrol. 209(1–4), 200–224 (1998). doi: 10.1016/s0022-1694(98)00173-5 CrossRefGoogle Scholar
  20. 20.
    Trotignon, L., Devallois, V., Peycelon, H., Tiffreau, C., Bourbon, X.: Predicting the long term durability of concrete engineered barriers in a geological repository for radioactive waste. Phys. Chem. Earth 32(1–7), 259–274 (2007)CrossRefGoogle Scholar
  21. 21.
    Vieillard, P., Ramirez, S., Bouchet, A., Cassagnabere, A., Meunier, A., Jacquot, E.: Alteration of the Callow-Oxfordian clay from Meuse-Haute Marne Underground Laboratory (France) by alkaline solution: II. Modelling of mineral reactions. Appl. Geochem. 19(11), 1699–1709 (2004). doi: 10.1016/j.apgeochem.2004.03.010 CrossRefGoogle Scholar
  22. 22.
    Watson, C., Hane, K., Savage, D., Benbow, S., Cuevas, J., Fernandez, R.: Reaction and diffusion of cementitious water in bentonite: results of ‘blind’ modelling. Appl. Clay Sci. 45 (1–2), 54–69 (2009). doi: 10.1016/j.clay.2009.03.007 CrossRefGoogle Scholar
  23. 23.
    Xu, T., Sonnenthal, E., Spycher, N., Pruess, K.: TOUGHREACT—a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration. Comput. Geosci. 32 (2), 145–165 (2006). doi: 10.1016/j.cageo.2005.06.014 CrossRefGoogle Scholar
  24. 24.
    Xu, T., Spycher, N., Sonnenthal, E., Zhang, G., Zheng, L., Pruess, K.: TOUGHREACT Version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Comput. Geosci. 37(6), 763–774 (2011). doi: 10.1016/j.cageo.2010.10.007 CrossRefGoogle Scholar
  25. 25.
    Parkhurst, D.L., Appelo, C.A.J.: User’s guide to PHREEQC (version 2)—a computer program for speciation, reaction-path, 1D-transport, and inverse geochemical calculations. US Geol. Surv. Water Resour. Inv. Rep. 99-4259, 312p. In. (1999)Google Scholar
  26. 26.
    Steefel, C.I., Yabusaki, S.B.: OS3D/GIMRT. Software for Modeling Muticomponent-Multidimensional Reactive Transport. User Manual & Programmer’s guide. In., vol. PNNL-11166. (1996)Google Scholar
  27. 27.
    van der Lee, J., Lagneau, V.: Rigorous methods for reactive transport in unsaturated porous medium coupled with chemistry and variable porosity. Dev. Water Sci. 55, 861–868 (2004)CrossRefGoogle Scholar
  28. 28.
    van der Lee, J., De Windt, L., Lagneau, V., Goblet, P.: Module-oriented modeling of reactive transport with HYTEC. Comput. Geosci. 29(3), 265–275 (2003). doi: 10.1016/S0098-3004(03)00004-9 CrossRefGoogle Scholar
  29. 29.
    van der Lee, J., De Windt, L., Lagneau, V., Goblet, P.: Presentation and application of the reactive transport code HYTEC. Computational Methods in Water Resources, vols 1 and 2. Proceedings 47, 599–606 (2002)Google Scholar
  30. 30.
    Meeussen, J.C.L.: ORCHESTRA: an object-oriented framework for implementing chemical equilibrium models. Environ. Sci. Technol. 37(6), 1175–1182 (2003). doi: 10.1021/es.025597s CrossRefGoogle Scholar
  31. 31.
    Mayer, K.U., Frind, E.O., Blowes, D.W.: Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour. Res. 38(9) (2002). doi: 10.1029/2001wr000862
  32. 32.
    Steefel, C.I., Mayer, K.U., Arora, B., Appelo, C.A.J., Hammond, G., Jacques, D., Kolditz, O., Lagneau, V., Lichtner, P.C., Meussen, H., Molins, S., Parkhurst, D.L., Shao, H., Simunek, J., Van der Lee, J., Yabusaki, S.B., Yeh, G.T.: Reactive transport codes for subsurface environmental simulation. Comput. Geosci. (2014). doi: 10.1007/s10596-014-9443-x
  33. 33.
    Gherardi, F., Audigane, P., Gaucher, E.C.: Predicting long-term geochemical alteration of wellbore cement in a generic geological CO2 confinement site: tackling a difficult reactive transport modeling challenge. J. Hydrol. 420, 340–359 (2012). doi: 10.1016/j.jhydrol.2011.12.026 CrossRefGoogle Scholar
  34. 34.
    Gaboreau, S., Lerouge, C., Dewonck, S., Linard, Y., Bourbon, X., Fialips, C.I., Mazurier, A., Prêt, D., Borschneck, D., Montouillout, V., Gaucher, E.C., Claret, F.: In-situ interaction of cement paste and shotcrete with claystones in a deep disposal context. Am. J. Sci. 312(3), 314–356 (2012). doi: 10.2475/03.2012.03 CrossRefGoogle Scholar
  35. 35.
    Blanc, P., Bourbon, X., Lassin, A., Gaucher, E.C.: Chemical model for cement-based materials: Temperature dependence of thermodynamic functions for nanocrystalline and crystalline C-S-H phases. Cem. Concr. Res. 40(6), 851–866 (2010)CrossRefGoogle Scholar
  36. 36.
    Blanc, P., Bourbon, X., Lassin, A., Gaucher, E.C.: Chemical model for cement-based materials: thermodynamic data assessment for phases other than C-S-H. Cem. Concr. Res. 40(9), 1360–1374 (2010)CrossRefGoogle Scholar
  37. 37.
    Burnol, A., Blanc, P., Xu, T., Spycher, N., Gaucher, E.C.: Uncertainty in the reactive transport model response to an alkaline perturbation in a clay formation. In: Laboratory, L.B.N. (ed.) T O U G H Symposium 2006. Berkeley (2006)Google Scholar
  38. 38.
    Delay, J., Rebours, H., Vinsot, A., Robin, P.: Scientific investigation in deep wells for nuclear waste disposal studies at the Meuse/Haute Marne underground research laboratory, Northeastern France. Phys. Chem. Earth 32(1–7), 42–57 (2007)CrossRefGoogle Scholar
  39. 39.
    Gaucher, E.C., Tournassat, C., Pearson, F.J., Blanc, P., Crouzet, C., Lerouge, C., Altmann, S.: A robust model for pore-water chemistry of clayrock. Geochim. Cosmochim. Acta 73(21), 6470–6487 (2009). doi: 10.1016/j.gca.2009.07.021 CrossRefGoogle Scholar
  40. 40.
    Lerouge, C., Michel, P., Gaucher, E.C., Tournassat, C.: A geological, mineralogical and geochemical GIS for the Andra URL: a tool for the water-rock interactions modelling at a regional scale. In: SKB (ed.) Technical Report TR-07-05 ( FUNMIG - 2nd annual workshop, Stockholm, Sweden (2006)
  41. 41.
    Claret, F., Lerouge, C., Laurioux, T., Bizi, M., Conte, T., Ghestem, J.P., Wille, G., Sato, T., Gaucher, E.C., Giffaut, E., Tournassat, C.: Natural iodine in a clay formation: implications for iodine fate in geological disposals. Geochim. Cosmochim. Acta 74(1), 16–29 (2010). doi: 10.1016/j.gca.2009.09.030 CrossRefGoogle Scholar
  42. 42.
    Tournassat, C., Gailhanou, H., Crouzet, C., Braibant, G., Gautier, A., Lassin, A., Blanc, P., Gaucher, E.C.: Two cation exchange models for direct and inverse modelling of solution major cation composition in equilibrium with illite surfaces. Geochim. Cosmochim. Acta 71(5), 1098–1114 (2007)CrossRefGoogle Scholar
  43. 43.
    Tournassat, C., Gailhanou, H., Crouzet, C., Braibant, G., Gautier, A., Gaucher, E.C.: Cation exchange selectivity coefficient values on smectite and mixed-layer illite/smectite minerals. Soil Sci. Soc. Am. J. 73(3), 928–942 (2009)CrossRefGoogle Scholar
  44. 44.
    Vinsot, A., Mettler, S., Wechner, S.: In situ characterization of the Callovo-Oxfordian pore water composition. Phys. Chem. Earth 33, S75–S86 (2008)CrossRefGoogle Scholar
  45. 45.
    Blanc, P., Lassin, A., Piantone, P., Azaroual, M., Jacquemet, N., Fabbri, A., Gaucher, E.C.: Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials. Appl. Geochem. 27(10), 2107–2116 (2012). doi: 10.1016/j.apgeochem.2012.06.002 CrossRefGoogle Scholar
  46. 46.
    Helgeson, H.C., Kirkham, D.H., Flowers, G.C.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb. Am. J. Sci. 281(10), 1249–1516 (1981). doi: 10.2475/ajs.281.10.1249 CrossRefGoogle Scholar
  47. 47.
    Allison, J.D., Brown, D.S., Novo-Gradac, K.J.: MINTEQA2/ PRODEFA2, A Geographical Assessment Model For Environmental Systems: Version 3.0 User’s Manual. In. EPA/600/3-91/021, Environmental Research Laboratory, United States Environmental Protection Agency, available at (1991)
  48. 48.
    Lasaga, A.C., Soler, J.M., Ganor, J., Burch, T.E., Nagy, K.L.: Chemical weathering rate laws and global geochemical cycles. Geochim. Cosmochim. Acta 58(10), 2361–2386 (1994). doi: 10.1016/0016-7037(94)90016-7 CrossRefGoogle Scholar
  49. 49.
    Marty, N.C.M., Claret, F., Lassin, A., Tremosa, J., Blanc, P., Madé, B., Giffaut, E., Cochepin, B., Tournassat, C.: A database of dissolution and precipitation rates for clay-rocks minerals. Appl. Geochem. (2014). doi: 10.1016/j.apgeochem.2014.10.012 Google Scholar
  50. 50.
    Gaines, J.G.L., Thomas, H.C.: Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption. J. Chem. Phys. 21(4), 714–718 (1953)CrossRefGoogle Scholar
  51. 51.
    Sposito, G.: The thermodynamics of soil solution. Oxford University Press, New York (1981)Google Scholar
  52. 52.
    Velbel, M.A.: Influence of temperature and mineral surface characteristics on feldspar weathering rates in natural and artificial systems: a first approximation. Water Resour. Res. 26(12), 3049–3053 (1990). doi: 10.1029/WR026i012p03049 Google Scholar
  53. 53.
    White, A.F., Brantley, S.L.: The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chem. Geol. 202(3–4), 479–506 (2003). doi: 10.1016/j.chemgeo.2003.03.001 CrossRefGoogle Scholar
  54. 54.
    Zhu, C.: In situ feldspar dissolution rates in an aquifer. Geochim. Cosmochim. Acta 69(6), 1435–1453 (2005). doi: 10.1016/j.gca.2004.09.005 CrossRefGoogle Scholar
  55. 55.
    Xie, M., Mayer, K.U., Claret, F., Alt-Epping, P., Jacques, D., Steefel, C., Chiaberge, C., Simunek, J.: Implementation and evaluation of permeability-porosity and tortuosity-porosity relationships linked to mineral dissolution-precipitation. Comput. Geosci. (2014). doi: 10.1007/s10596-014-9458-3
  56. 56.
    Vinsot, A., Mettler, S., Wechner, S.: In situ characterization of the Callovo-Oxfordian pore water composition. Phys. Chem. Earth, Parts A/B/C 33 Supplement 1(0), S75–S86 (2008). doi: 10.1016/j.pce.2008.10.048 CrossRefGoogle Scholar
  57. 57.
    Xu, T., Sonnenthal, E., Spycher, N., Pruess, K.: TOUGHREACT User’s guide: a simulation program for non-isothermal multiphase reactive geochemical transport in variable saturated geologic media. In. Lawrence Berkeley National Laboratory, available at (2004)

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nicolas C. M. Marty
    • 1
  • Olivier Bildstein
    • 2
  • Philippe Blanc
    • 1
  • Francis Claret
    • 1
  • Benoit Cochepin
    • 3
  • Eric C. Gaucher
    • 1
    • 8
  • Diederik Jacques
    • 5
  • Jean-Eric Lartigue
    • 2
  • Sanheng Liu
    • 5
  • K. Ulrich Mayer
    • 4
  • Johannes C. L. Meeussen
    • 6
  • Isabelle Munier
    • 3
  • Ingmar Pointeau
    • 2
  • Danyang Su
    • 4
  • Carl I. Steefel
    • 7
  1. 1.BRGMOrleans CedexFrance
  2. 2.CEASaint-Paul-lez-DuranceFrance
  3. 3.ANDRAChâtenay-Malabry CedexFrance
  4. 4.Department of Earth, Ocean and Atmospheric SciencesUniversity of British ColumbiaVancouverCanada
  5. 5.Belgian Nuclear Research Centre SCK ⋅CENMolBelgium
  6. 6.Nuclear Research and Consultancy GroupPettenThe Netherlands
  7. 7.Lawrence Berkeley National LaboratoryBerkeleyUSA
  8. 8.TOTALCSTFJCedexFrance

Personalised recommendations