Abstract
Performing accurate and efficient numerical simulation of global atmospheric climate models is challenging due to the disparate length and time scales over which physical processes interact. Implicit solvers enable the physical system to be integrated with a time step commensurate with processes being studied. The dominant cost of an implicit time step is the ancillary linear system solves, so we have developed a preconditioner aimed at improving the efficiency of these linear system solves. Our preconditioner is based on an approximate block factorization of the linearized shallow-water equations and has been implemented within the spectral element dynamical core within the Community Atmospheric Model (CAM-SE). In this paper, we discuss the development and scalability of the preconditioner for a suite of test cases with the implicit shallow-water solver within CAM-SE.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
Brown, P.N., Saad, Y.: Hybrid Krylov methods for nonlinear systems. SIAM J. Sci. Stat. Comput. 11(3), 450–481 (1990)
Carpenter, I., Archibald, R., Evans, K.J., Micikevicius, P., Larkin, J., Rsoinski, J., Schwarzmeier, J., Taylor, M.: Progress toward accelerating HOMME for hybrid multi-core architectures. Internat. J. High Perf. Comput. Appl. 27, 334–345 (2013)
Chacon, L.: Scalable parallel implicit solvers for 3D magnetohydrodynamics. J. Phys. Conf. Ser. 125, 12,041–12,041 (2008)
Cyr, E., Shadid, J., Tuminaro, R., Pawlowski, R., Chacon, L.: A new approximate block factorization preconditioner for two-dimensional incompressible (reduced) resistive MHD. SIAM J. Sci. Comput. 35(3), B701–B730 (2013)
Dennis, J., Edwards, J., Evans, K.J., Guba, O., Lauritzen, P., Mirin, A., St.-Cyr, A., Taylor, M., Worley, P.H.: A scalable spectral element dynamical core for the community atmosphere model. Internat. J. High Perf. Comput. Appl. 26, 5–16 (2012). doi:10.1177/1094342012436965
Doormaal, J.P.V., Raithby, G.D.: Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer. Heat Transf. Part A: Appl. 7(2), 147–163 (1984)
ECMWF: IFS Documentation - Cy38r1, Part III: Dynamics and Numerical procedures. Tech. Rep. cy38ra. European Centre for Medium-Range Weather Forecasting. http://www.ecmwf.int/research/ifsdocs/CY38r1/IFSPart3.pdf (2012)
Elman, H.C., Howle, V.E., Shadid, J., Shuttleworth, R., Tuminaro, R.: A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations. J. Comput. Sci. 227(3), 1790–1808 (2008)
Elman, H.C., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation. Oxford University Press, New York. http://www.amazon.com/exec/obidos/ASIN/0198528671 (2005)
Evans, K., Lauritzen, P., Neale, R., Mishra, S., Taylor, M.A., Tribbia, J.: AMIP simulation with the CAM4 spectral element dynamical core. J. Clim. 26, 689–709 (2013). doi:10.1175/JCLI-D-11-00448.1
Evans, K.J., Knoll, D.A., Pernice, M.A.: Development of a 2-D algorithm to simulate convection and phase transition efficiently. J. Comp. Phys. 219, 404–417 (2006)
Evans, K.J., Rouson, D.W.I., Salinger, A.G., Taylor, M.A., Weijer, W., III, J.B.W.: A Scalable and Adaptable Solution Framework within Components of the Community Climate System Model. Lecture Notes in Computer Science, vol. 5545, pp. 332–341. Springer, Heidelberg (2009)
Evans, K.J., Taylor, M.A., Drake, J.B.: Accuracy analysis of a spectral element atmospheric model using a fully implicit solution framework. Mon. Weather Rev. 138, 3333–3341 (2010)
Galewsky, J., Scott, R.K., Polvani, L.M.: An initial-value problem for testing numerical models of the global shallow-water equations. Tellus 56(A), 429–440 (2004)
Howle, V.E., Kirby, R.C.: Block preconditioners for finite element discretization of incompressible flow with thermal convection. Numer. Linear Algebra Appl. 19(2), 427–440 (2012)
Jia, J., Hill, J.C., Evans, K.J., Fann, G.I., Taylor, M.A.: A spectral deferred correction method applied to the shallow water equations on a sphere. Mon. Weather Rev. 141, 3435–3449 (2013)
Lott, P.A., Elman, H.C., Evans, K.J., Li, X.S., Salinger, A.G., Woodward, C.S.: Recent progress in nonlinear and linear solvers. In: SciDAC. Denver, CO July 10-14, 2011. http://www.mcs.anl.gov/uploads/cels/papers/scidac11/final/lottaaron.pdf (2011)
Neale, R.e.a.: Description of the Community Atmosphere Model (CAM 5.0). NCAR Technical Note TN-486+STR (2010)
Patankar, S.V.: Numerical Heat Transfer And Fluid Flow. Taylor and Francis, Bristol (1980)
Patankar, S.V., Spalding, D.B.: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transfer 15(10), 1787–1806 (1972)
Pernice, M., Tocci, M.D.: A multigrid-preconditioned Newton-Krylov method for the incompressible Navier-Stokes equations. SIAM J. Sci. Comput. 23(2), 398–418 (2001)
Quarteroni, A., Saleri, F., Veneziani, A.: Factorization methods for the numerical approximation of Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 188(1–3), 505–526 (2000)
Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14(2), 461–469 (1993). doi:10.1137/0914028
Sadourny, R.: Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Mon. Weather Rev. 100(2), 136–144 (1972)
Segal, A., ur Rehman, M., Vuik, C.: Preconditioners for incompressible Navier-Stokes solvers. Numer. Math.: Theory, Methods Appl. 3(3), 245–275 (2010)
Taylor, M.A., Edwards, J., St.-Cyr, A.: Petascale atmospheric models for the community climate system model: new developments and evaluation of scalable dynamic cores. J. Phys. Conf. Ser. 125, 012,023 (2008)
Taylor, M.A., Edwards, J., Thomas, S., Nair, R.: A mass and energy conserving spectral element atmospheric dynamical core on the cubed-sphere grid. J. Phys. Conf. Ser. 78, 012,074 (2007)
Taylor, M.A., Fournier, A.: A compatible and conservative spectral element method on unstructured grids. J. Comput. Phys. 229(17), 5879–5895 (2010)
Thomas, S.J., Dennis, J.M., Tufo, H.M., Fischer, P.F.: A Schwarz preconditioner for the cubed-sphere. SIAM J. Sci. Comput. 25(2), 442–453 (2003). doi:10.1137/S1064827502409420
Thomas, S.J., Loft, R.D.: Semi-implicit spectral element atmospheric model. J. Sci. Comput. 17, 339–350 (2002)
Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., Swarztrauber, P.N.: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys. 102(1), 211–224 (1992)
Yang, C., Cao, J., Cai, X.C.: A fully implicit domain decomposition algorithm for shallow water equations on the cubed sphere. SIAM J. Sci. Comput. 32(1), 418–438 (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lott, P.A., Woodward, C.S. & Evans, K.J. Algorithmically scalable block preconditioner for fully implicit shallow-water equations in CAM-SE. Comput Geosci 19, 49–61 (2015). https://doi.org/10.1007/s10596-014-9447-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10596-014-9447-6