Skip to main content

Algorithmically scalable block preconditioner for fully implicit shallow-water equations in CAM-SE

Abstract

Performing accurate and efficient numerical simulation of global atmospheric climate models is challenging due to the disparate length and time scales over which physical processes interact. Implicit solvers enable the physical system to be integrated with a time step commensurate with processes being studied. The dominant cost of an implicit time step is the ancillary linear system solves, so we have developed a preconditioner aimed at improving the efficiency of these linear system solves. Our preconditioner is based on an approximate block factorization of the linearized shallow-water equations and has been implemented within the spectral element dynamical core within the Community Atmospheric Model (CAM-SE). In this paper, we discuss the development and scalability of the preconditioner for a suite of test cases with the implicit shallow-water solver within CAM-SE.

This is a preview of subscription content, access via your institution.

References

  1. Brown, P.N., Saad, Y.: Hybrid Krylov methods for nonlinear systems. SIAM J. Sci. Stat. Comput. 11(3), 450–481 (1990)

    Article  Google Scholar 

  2. Carpenter, I., Archibald, R., Evans, K.J., Micikevicius, P., Larkin, J., Rsoinski, J., Schwarzmeier, J., Taylor, M.: Progress toward accelerating HOMME for hybrid multi-core architectures. Internat. J. High Perf. Comput. Appl. 27, 334–345 (2013)

    Article  Google Scholar 

  3. Chacon, L.: Scalable parallel implicit solvers for 3D magnetohydrodynamics. J. Phys. Conf. Ser. 125, 12,041–12,041 (2008)

    Article  Google Scholar 

  4. Cyr, E., Shadid, J., Tuminaro, R., Pawlowski, R., Chacon, L.: A new approximate block factorization preconditioner for two-dimensional incompressible (reduced) resistive MHD. SIAM J. Sci. Comput. 35(3), B701–B730 (2013)

    Article  Google Scholar 

  5. Dennis, J., Edwards, J., Evans, K.J., Guba, O., Lauritzen, P., Mirin, A., St.-Cyr, A., Taylor, M., Worley, P.H.: A scalable spectral element dynamical core for the community atmosphere model. Internat. J. High Perf. Comput. Appl. 26, 5–16 (2012). doi:10.1177/1094342012436965

    Article  Google Scholar 

  6. Doormaal, J.P.V., Raithby, G.D.: Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer. Heat Transf. Part A: Appl. 7(2), 147–163 (1984)

    Google Scholar 

  7. ECMWF: IFS Documentation - Cy38r1, Part III: Dynamics and Numerical procedures. Tech. Rep. cy38ra. European Centre for Medium-Range Weather Forecasting. http://www.ecmwf.int/research/ifsdocs/CY38r1/IFSPart3.pdf (2012)

  8. Elman, H.C., Howle, V.E., Shadid, J., Shuttleworth, R., Tuminaro, R.: A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations. J. Comput. Sci. 227(3), 1790–1808 (2008)

    Google Scholar 

  9. Elman, H.C., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation. Oxford University Press, New York. http://www.amazon.com/exec/obidos/ASIN/0198528671 (2005)

  10. Evans, K., Lauritzen, P., Neale, R., Mishra, S., Taylor, M.A., Tribbia, J.: AMIP simulation with the CAM4 spectral element dynamical core. J. Clim. 26, 689–709 (2013). doi:10.1175/JCLI-D-11-00448.1

    Article  Google Scholar 

  11. Evans, K.J., Knoll, D.A., Pernice, M.A.: Development of a 2-D algorithm to simulate convection and phase transition efficiently. J. Comp. Phys. 219, 404–417 (2006)

    Article  Google Scholar 

  12. Evans, K.J., Rouson, D.W.I., Salinger, A.G., Taylor, M.A., Weijer, W., III, J.B.W.: A Scalable and Adaptable Solution Framework within Components of the Community Climate System Model. Lecture Notes in Computer Science, vol. 5545, pp. 332–341. Springer, Heidelberg (2009)

    Google Scholar 

  13. Evans, K.J., Taylor, M.A., Drake, J.B.: Accuracy analysis of a spectral element atmospheric model using a fully implicit solution framework. Mon. Weather Rev. 138, 3333–3341 (2010)

    Article  Google Scholar 

  14. Galewsky, J., Scott, R.K., Polvani, L.M.: An initial-value problem for testing numerical models of the global shallow-water equations. Tellus 56(A), 429–440 (2004)

    Article  Google Scholar 

  15. Howle, V.E., Kirby, R.C.: Block preconditioners for finite element discretization of incompressible flow with thermal convection. Numer. Linear Algebra Appl. 19(2), 427–440 (2012)

    Article  Google Scholar 

  16. Jia, J., Hill, J.C., Evans, K.J., Fann, G.I., Taylor, M.A.: A spectral deferred correction method applied to the shallow water equations on a sphere. Mon. Weather Rev. 141, 3435–3449 (2013)

    Article  Google Scholar 

  17. Lott, P.A., Elman, H.C., Evans, K.J., Li, X.S., Salinger, A.G., Woodward, C.S.: Recent progress in nonlinear and linear solvers. In: SciDAC. Denver, CO July 10-14, 2011. http://www.mcs.anl.gov/uploads/cels/papers/scidac11/final/lottaaron.pdf (2011)

  18. Neale, R.e.a.: Description of the Community Atmosphere Model (CAM 5.0). NCAR Technical Note TN-486+STR (2010)

  19. Patankar, S.V.: Numerical Heat Transfer And Fluid Flow. Taylor and Francis, Bristol (1980)

    Google Scholar 

  20. Patankar, S.V., Spalding, D.B.: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transfer 15(10), 1787–1806 (1972)

    Article  Google Scholar 

  21. Pernice, M., Tocci, M.D.: A multigrid-preconditioned Newton-Krylov method for the incompressible Navier-Stokes equations. SIAM J. Sci. Comput. 23(2), 398–418 (2001)

    Article  Google Scholar 

  22. Quarteroni, A., Saleri, F., Veneziani, A.: Factorization methods for the numerical approximation of Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 188(1–3), 505–526 (2000)

    Article  Google Scholar 

  23. Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14(2), 461–469 (1993). doi:10.1137/0914028

    Article  Google Scholar 

  24. Sadourny, R.: Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Mon. Weather Rev. 100(2), 136–144 (1972)

    Article  Google Scholar 

  25. Segal, A., ur Rehman, M., Vuik, C.: Preconditioners for incompressible Navier-Stokes solvers. Numer. Math.: Theory, Methods Appl. 3(3), 245–275 (2010)

    Google Scholar 

  26. Taylor, M.A., Edwards, J., St.-Cyr, A.: Petascale atmospheric models for the community climate system model: new developments and evaluation of scalable dynamic cores. J. Phys. Conf. Ser. 125, 012,023 (2008)

    Article  Google Scholar 

  27. Taylor, M.A., Edwards, J., Thomas, S., Nair, R.: A mass and energy conserving spectral element atmospheric dynamical core on the cubed-sphere grid. J. Phys. Conf. Ser. 78, 012,074 (2007)

    Article  Google Scholar 

  28. Taylor, M.A., Fournier, A.: A compatible and conservative spectral element method on unstructured grids. J. Comput. Phys. 229(17), 5879–5895 (2010)

    Article  Google Scholar 

  29. Thomas, S.J., Dennis, J.M., Tufo, H.M., Fischer, P.F.: A Schwarz preconditioner for the cubed-sphere. SIAM J. Sci. Comput. 25(2), 442–453 (2003). doi:10.1137/S1064827502409420

    Article  Google Scholar 

  30. Thomas, S.J., Loft, R.D.: Semi-implicit spectral element atmospheric model. J. Sci. Comput. 17, 339–350 (2002)

    Article  Google Scholar 

  31. Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., Swarztrauber, P.N.: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys. 102(1), 211–224 (1992)

    Article  Google Scholar 

  32. Yang, C., Cao, J., Cai, X.C.: A fully implicit domain decomposition algorithm for shallow water equations on the cubed sphere. SIAM J. Sci. Comput. 32(1), 418–438 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol S. Woodward.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lott, P.A., Woodward, C.S. & Evans, K.J. Algorithmically scalable block preconditioner for fully implicit shallow-water equations in CAM-SE. Comput Geosci 19, 49–61 (2015). https://doi.org/10.1007/s10596-014-9447-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-014-9447-6

Keywords

  • Preconditioning
  • Shallow-water equations
  • Atmospheric climate
  • Community atmospheric model
  • Spectral element method