Computational Geosciences

, Volume 19, Issue 3, pp 445–478 | Cite as

Reactive transport codes for subsurface environmental simulation

  • C. I. Steefel
  • C. A. J. Appelo
  • B. Arora
  • D. Jacques
  • T. Kalbacher
  • O. Kolditz
  • V. Lagneau
  • P. C. Lichtner
  • K. U. Mayer
  • J. C. L. Meeussen
  • S. Molins
  • D. Moulton
  • H. Shao
  • J. Šimůnek
  • N. Spycher
  • S. B. Yabusaki
  • G. T. Yeh
Open Access
ORIGINAL PAPER

Abstract

A general description of the mathematical and numerical formulations used in modern numerical reactive transport codes relevant for subsurface environmental simulations is presented. The formulations are followed by short descriptions of commonly used and available subsurface simulators that consider continuum representations of flow, transport, and reactions in porous media. These formulations are applicable to most of the subsurface environmental benchmark problems included in this special issue. The list of codes described briefly here includes PHREEQC, HPx, PHT3D, OpenGeoSys (OGS), HYTEC, ORCHESTRA, TOUGHREACT, eSTOMP, HYDROGEOCHEM, CrunchFlow, MIN3P, and PFLOTRAN. The descriptions include a high-level list of capabilities for each of the codes, along with a selective list of applications that highlight their capabilities and historical development.

Keywords

Reactive transport Modeling Environmental simulation Computer software Code benchmark 

References

  1. 1.
    Li, L., Steefel, C.I., Yang, L.: Scale dependence of mineral dissolution rates within single pores and fractures. Geochim. Cosmochim. Acta. 72, 360–377 (2008)Google Scholar
  2. 2.
    Molins, S., Trebotich, D., Steefel, C.I., Shen, C.: An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation. Water Resour. Res. 48, W03527 (2012)Google Scholar
  3. 3.
    Steefel, C.I., Molins, S., Trebotich, D.: Pore scale processes associated with subsurface CO 2 injection and sequestration. Rev. Mineral. Geochem. 77, 259–303 (2013)Google Scholar
  4. 4.
    Oostrom, M., Mehmani, Y., Romero-Gomez, P., Tang, Y., Liu, H., Yoon, H., Zhang, C.: Pore-scale and continuum simulations of solute transport micromodel benchmark experiments. Comput. Geosci., 1–23 (2014)Google Scholar
  5. 5.
    Aris, R.: Prolegomena to the rational analysis of systems of chemical reactions. Arch. Ration. Mech. Anal. 19, 81–99 (1965)Google Scholar
  6. 6.
    Bowen, R.M.: On the stoichiometry of chemically reacting materials. Arch. Ration. Mech. Anal. 29, 114–124 (1968)Google Scholar
  7. 7.
    Hooyman, G.J.: On thermodynamic coupling of chemical reactions. Proc. Natl. Acad. Sci. 47, 1169–1173 (1961)Google Scholar
  8. 8.
    Kirkner, D.J., Reeves, H.: Multicomponent mass transport with homogeneous and heterogeneous chemical reactions: Effect of chemistry on the choice of numerical algorithm I. Theory. Water Resour. Res. 24, 1719–1729 (1988)Google Scholar
  9. 9.
    Lichtner, P.C.: Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems. Geochim. Cosmochim. Acta 49, 779–800 (1985)Google Scholar
  10. 10.
    Reed, M.H.: Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases, and an aqueous phase. Geochim. Cosmochim. Acta 46, 513–528 (1982)Google Scholar
  11. 11.
    Van Zeggeren, F., Storey, S.H.: The computation of chemical equilibria, p. 176. Cambridge University Press, Cambridge (1970)Google Scholar
  12. 12.
    Steefel, C.I., Lasaga, A.C.: A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. Am. J. Sci. 294, 529–592 (1994)Google Scholar
  13. 13.
    Davis, J.A., Meece, D.E., Kohler, M., Curtis, G.P.: Approaches to surface complexation modeling of uranium (VI) adsorption on aquifer sediments. Geochim. Cosmochim. Acta 68, 3621–3641 (2004)Google Scholar
  14. 14.
    Kulik, D.A.: Thermodynamic concepts in modeling sorption at the mineral-water interface. Rev. Mineral. Geochem. 70, 125–180 (2009)Google Scholar
  15. 15.
    Dzombak, D.A., Morel, F.M.M.: Surface complexation modeling: hydrous ferric oxide, p. 393. Wiley, New York (1990)Google Scholar
  16. 16.
    Wang, Z., Giammar, D.E.: Mass action expressions for bidentate adsorption in surface complexation modeling: Theory and practice. Environ. Sci. Technol. 47, 3982–3996 (2013)Google Scholar
  17. 17.
    Davis, J.A., Coston, J.A., Kent, D.B., Fuller, C.C.: Application of the surface complexation concept to complex mineral assemblages. Environ. Sci. Technol. 32(19), 2820–2828 (1998)Google Scholar
  18. 18.
    Liu, C., Zachara, J.M., Qafoku, N.P., Wang, Z.: Scale-dependent desorption of uranium from contaminated subsurface sediments. Water Resour. Res. 8, 44 (2008)Google Scholar
  19. 19.
    Vanselow, A.P.: Equilibria of the base-exchange reactions of bentonites, permutites, soil colloids, and zeolites. Soil Sci. 33, 95–114 (1932)Google Scholar
  20. 20.
    Sposito, G.: The thermodynamics of soil solutions, p. 223. Oxford University Press, Oxford (1981)Google Scholar
  21. 21.
    Appelo, C.A.J., Postma, D.: Geochemistry, groundwater, and pollution. A.A. Balkema, Rotterdam, p. 649 (1993)Google Scholar
  22. 22.
    Steefel, C.I., Carroll, S., Zhao, P., Roberts, S.: Cesium migration in Hanford sediment: A multi-site cation exchange model based on laboratory transport experiments. J. Contam. Hydrol. 67, 219–246 (2003)Google Scholar
  23. 23.
    Aagaard, P., Helgeson, H.C.: Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions; I, Theoretical considerations. Am. J. Sci. 282(3), 237–285 (1982)Google Scholar
  24. 24.
    Lasaga, A.C.: Chemical kinetics of water-rock interactions. J. Geophys. Res. Solid Earth (1978–2012) 89(B6), 4009–4025 (1984)Google Scholar
  25. 25.
    Rittmann, B.E., McCarty, P.L.: Environmental biotechnology. McGraw Hill, New York (2001)Google Scholar
  26. 26.
    Jin, Q., Bethke, C.M.: Predicting the rate of microbial respiration in geochemical environments. Geochim. Cosmochim. Acta 69, 1133–1143 (2005)Google Scholar
  27. 27.
    Bear, J.: Dynamics of fluids in porous media, p. 764. Dover Publications (1972)Google Scholar
  28. 28.
    Steefel, C.I., Maher, K.: Fluid-rock interaction: A reactive transport approach. Rev. Mineral. Geochem. 70, 485–532 (2009)Google Scholar
  29. 29.
    Neuman, S.P.: Saturated-unsaturated seepage by finite elements. J. Hydrol. Div. Am. Soc. Civ. Eng. 99(HY12), 2233–2250 (1973)Google Scholar
  30. 30.
    Panday, S., Huyakorn, P.S., Therrien, R., Nichols, R.L.: Improved three-dimensional finite-element techniques for field simulation of variably-saturated flow and transport. J. Contam. Hydrol. 12, 3–33 (1993)Google Scholar
  31. 31.
    Van Genuchten, M.T.: A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)Google Scholar
  32. 32.
    Brooks, R.H., Corey, A.T.: Hydraulic properties of porous media. Colorado State Univ., Hydrology Paper No. 3, p. 27 (1964)Google Scholar
  33. 33.
    Luckner, L., Van Genuchten, M.T., Nielsen, D.R.: A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface. Water Resour. Res. 25(10), 2187–2193 (1989)Google Scholar
  34. 34.
    Millington, R.J.: Gas diffusion in porous media. Science 130(3367), 100–102 (1959)Google Scholar
  35. 35.
    Mayer, K.U., Blowes, D.W., Frind, E.O.: Reactive transport modeling for the treatment of an in situ reactive barrier for the treatment of hexavalent chromium and trichloroethylene in groundwater. Water Resour. Res. 37, 3091–3103 (2001)Google Scholar
  36. 36.
    Molins, S., Mayer, K.U.: Coupling between geochemical reactions and multicomponent gas diffusion and advection – a reactive transport modeling study. Water Resour. Res. 43, W05435 (2007)Google Scholar
  37. 37.
    Cheadle, M.J., Elliott, M.T., McKenzie, D.: Percolation threshold and permeability of crystallizing igneous rocks: The importance of textural equilibrium. Geology 32, 757–760 (2004)Google Scholar
  38. 38.
    Verma, A., Pruess, K.: Thermohydrological conditions and silica redistribution near high-level nuclear wastes emplaced in saturated geological formations. J. Geophys. Res. Solid Earth 93(B2), 1159–1173 (1988)Google Scholar
  39. 39.
    Vaughan, P.J.: Analysis of permeability reduction during flow of heated aqueous fluid through Westerly Granite. In: Tsang, C.-F. (ed.) Coupled processes associated with nuclear waste repositories. Academic Press, New York (1989)Google Scholar
  40. 40.
    Slider, H.C.: Practical petroleum reservoir engineering methods, An Energy Conservation Science. Petroleum Publishing Company, Tulsa (1976)Google Scholar
  41. 41.
    Wu, Y.S.: On the effective continuum method for modeling multiphase flow, multicomponent transport, and heat transfer in fractured rock. In: Faybishenk, B., Witherspoon, P.A., Benson, S.M. (eds.) Dynamics of Fluids Fractured Rock, pp. 299–312 (2000)Google Scholar
  42. 42.
    Barenblatt, G.I., Zheltov, I.P., Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. J. Appl. Math. Mech. 24, 1286–1303 (1960)Google Scholar
  43. 43.
    Warren, J.E., Root, P.J.: The behavior of naturally fractured reservoirs. SPE J. 3, 245–255 (1963)Google Scholar
  44. 44.
    Pruess, K., Narasimhan, T.N.: A practical method for modeling fluid and heat flow in fractured porous media. Soc. Pet. Eng. J. 25, 14–26 (1985)Google Scholar
  45. 45.
    Snow, D.T.: A parallel plate model of fractured permeable media, Ph.D. dissertation, p. 331. University of California, Berkeley (1965)Google Scholar
  46. 46.
    Arora, B., Mohanty, B.P., McGuire, J.T.: Inverse estimation of parameters for multidomain flow models in soil columns with different macropore densities. Water Resour. Res. 47, 1–17 (2011)Google Scholar
  47. 47.
    Wu, Y.S., Di, Y., Kang, Z., Fakcharoenphol, P.: A multiple-continuum model for simulating single-phase and multiphase flow in naturally fractured vuggy reservoirs. J. Pet. Sci. Eng. 78, 13–22 (2011)Google Scholar
  48. 48.
    Aradóttir, E.S.P., Sigfússon, B., Sonnenthal, E.L., Björnsson, G., Jónsson, H.: Dynamics of basaltic glass dissolution–capturing microscopic effects in continuum scale models. Geochim. Cosmochim. Acta 121, 311–327 (2013)Google Scholar
  49. 49.
    Lichtner, P.C.: Critique of dual continuum formulations of multicomponent reactive transport in fractured porous media. In: Faybishenk, B., Witherspoon, P.A., Benson, S.M. (eds.) Dynamics of Fluids Fractured Rock, pp. 281–298 (2000)Google Scholar
  50. 50.
    Berkowitz, B.: Characterizing flow and transport in fractured geological media: A review. Adv. Water Resour. 25, 861–884 (2002)Google Scholar
  51. 51.
    Šimu̇nek, J., Jarvis, N.J., Van Genuchten, M.T., Gärdenäs, A.: Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. J. Hydrol. 272, 14–35 (2003)Google Scholar
  52. 52.
    MacQuarrie, K.T., Mayer, K.U.: Reactive transport modeling in fractured rock: A state-of-the-science review. Earth Sci. Rev. 72, 189–227 (2005)Google Scholar
  53. 53.
    Somerton, W.H., El-Shaarani, A.H., Mobarak, S.M.: High temperature behavior of rocks associated with geothermal type reservoirs. In: SPE California Regional Meeting. Society of Petroleum Engineers (1974)Google Scholar
  54. 54.
    Steefel, C.I., MacQuarrie, K.T.B.: Approaches to modeling reactive transport in porous media. In: Lichtner, P.C., Steefel, C.I., Oelkers, E.H. (eds.) Reactive Transport in Porous Media, vol. 34, pp. 83–125. Reviews in Mineralogy (1996)Google Scholar
  55. 55.
    Kulik, D.A., Wagner, T., Dmytrieva, S.V., Kosakowski, G., Hingerl, F.F., Chudnenko, K.V., Berner, U.R.: GEM-Selektor geochemical modeling package: Revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Comput. Geosci. 17(1), 1–24 (2013)Google Scholar
  56. 56.
    Leal, A.M.M., Blunt, M.J., LaForce, T.C.: Efficient chemical equilibrium calculations for geochemical speciation and reactive transport modelling. Geochim. Cosmochim. 131, 301–322 (2014)Google Scholar
  57. 57.
    Saaltink, M.W., Carrera, J., Ayora, C.: On the behavior of approaches to simulate reactive transport. J. Contam. Hydrol. 48, 213–235 (2001)Google Scholar
  58. 58.
    Calderhead, A., Mayer, K.U.: Comparison of the suitability of the global implicit method and the sequential non-iterative approach for multicomponent reactive transport modelling. In: Proceedings of 5th Joint IAH-CNC/CGS Conference, Québec City, Québec, Canada, pp. 24–28 (2004)Google Scholar
  59. 59.
    Lichtner, P.C.: Time-space continuum description of fluid/rock interaction in permeable media. Water Resour. Res. 28, 3135–3155 (1992)Google Scholar
  60. 60.
    Parkhurst, D.L., Appelo, C.A.J.: User’s guide to PHREEQ C (Version 2) – a computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations, Water-Resources Investigations, Report 99–4259, Denver, Co, USA, p. 312 (1999)Google Scholar
  61. 61.
    Parkhurst, D.L., Appelo, C.A.J.: Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p., available only at http://pubs.usgs.gov/tm/06/a43 (2013)
  62. 62.
    Appelo, C.A.J., Parkhurst, D.L., Post, V.E.A.: Equations for calculating hydrogeochemical reactions of minerals and gases such as CO 2 at high pressures and temperatures. Geochim. Cosmochim. Acta 125, 49–67 (2014)Google Scholar
  63. 63.
    Thorstenson, D.C., Parkhurst, D.L.: Calculation of individual isotope equilibrium constants for geochemical reactions. Geochim. Cosmochim. Acta 11(68), 2449–2465 (2004)Google Scholar
  64. 64.
    Charlton, S.R., Parkhurst, D.L.: Phast4Windows: A 3D graphical user interface for the reactive-transport simulator PHAST. Groundwater 4(51), 623–628 (2013)Google Scholar
  65. 65.
    Šimu̇nek, J., Jacques, D., Šejna, M., van Genuchten, M.T.: The HP2 Program for HYDRUS (2D/3D): A coupled code for simulating two-dimensional variably-saturated water flow, heat transport, and biogeochemistry in porous media, Version 1.0, PC Progress, Prague, Czech Republic, p. 76 (2012)Google Scholar
  66. 66.
    Šimu̇nek, J., Jacques, D., Langergraber, G., Bradford, S.A., Šejna, M., van Genuchten, M.T.: Numerical modeling of contaminant transport using HYDRUS and its specialized modules, Vol. 93, pp 265–284 (2013). ISSN: 0970-4140 Coden-JIISADGoogle Scholar
  67. 67.
    Parkhurst, D.L., Kipp, K.L., Charlton, S.R.: PHAST Version 2—a program for simulating groundwater flow, solute transport, and multicomponent geochemical reactions: U.S. Geological Survey Techniques and Methods 6–A35, p. 235 (2010)Google Scholar
  68. 68.
    Prommer, H., Post, V.E.A.: PHT3D, A Reactive Multicomponent Transport Model for Saturated Porous Media. User’s Manual v2.10 (2010). http://www.pht3d.org
  69. 69.
    Šiu̇nek, J., van Genuchten, M.T.: Modeling non-equilibrium flow and transport processes using HYDRUS. Vadose Zone J. 7(2), 782–797 (2008)Google Scholar
  70. 70.
    Jacques, D., Šimu̇nek, J.: User Manual of the Multicomponent Variably-Saturated Flow and Transport Model HP1, Description, Verification and Examples, Version 1.0, SCK⋅CEN-BLG-998, Waste and Disposal, SCK⋅CEN, Mol, Belgium, p. 79 (2005)Google Scholar
  71. 71.
    Jacques, D., Šimu̇nek, J., Mallants, D., van Genuchten, M.T.: Operator-splitting errors in coupled reactive transport codes for transient variably saturated flow and contaminant transport in layered soil profiles. J. Contam. Hydrol. 88, 197–218 (2006)Google Scholar
  72. 72.
    Šimu̇nek, J., Hopmans, J.W.: Modeling compensated root water and nutrient uptake. Ecological Modeling 220, 505–521 (2009)Google Scholar
  73. 73.
    Jacques, D., Šimu̇nek, J., Mallants, D., van Genuchten, M.T., Yu, L.: A coupled reactive transport model for contaminant leaching from cementitious waste matrices accounting for solid phase alterations. In: Proceedings Sardinia 2011, Thirteenth International Waste Management and Landfill Symposium (2011)Google Scholar
  74. 74.
    Celia, M.A., Bououtas, E.T., Zarba, R.L.: A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res. 26, 1483–1496 (1990)Google Scholar
  75. 75.
    Jacques, D., Šimu̇nek, J., Mallants, D., van Genuchten, M.T.: Modelling coupled water flow, solute transport and geochemical reactions affection heavy metal migration in a Podzol soil. Geoderma 145, 449–461 (2008)Google Scholar
  76. 76.
    Jacques, D., Šimu̇nek, J., Mallants, D., van Genuchten, M.T.: Modeling coupled hydrogeologic and chemical processes: Long-term uranium transport following phosphorus fertilization. Vadose Zone J. 7(2), 698–711 (2008)Google Scholar
  77. 77.
    Jacques, D., Smith, C., Šimu̇nek, J., Smiles, D.: Inverse optimization of hydraulic, solute transport, and cation exchange parameters using HP1 and UCODE to simulate cation exchange. J. Contam. Hydrol. 142–143, 109–125 (2012)Google Scholar
  78. 78.
    Bessinger, B.A., Marks, C.D.: Treatment of mercury-contaminated soils with activated carbon: A laboratory, field, and modeling study. Remediation (The journal of Environmental Cleanup Costs, Technologies, & Techniques), 21(1), 115–135 (2010). doi:10.1002/rem.20275
  79. 79.
    Leterme, B., Jacques, D.: Modelling of mercury fate and transport in soil systems. In: Proceedings of the 12th International UFZ-Deltares Conference on Groundwater-Soil-Systems and Water Resource Management - AQUACONSOIL 2013 (2013). www.aquaconsoil.org/AquaConSoil2013/Proceedings.html
  80. 80.
    Leterme, B., Blanc, P., Jacques, D.: A reactive transport model for mercury fate in soil – application to different anthropogenic pollution sources. Environmental Science and Pollution Research, (under review) (2014)Google Scholar
  81. 81.
    Jacques, D., Maes, N., Perko, J., Seetharam, S.C. , Phung, Q.T., Patel, R., Soto, A., Liu, S., Wang, L., De Schutter, G., Ye, G., van Breugel, K.: Concrete in engineered barriers for radioactive waste disposal facilities - phenomenological study and assessment of long term performance. In: Proceedings of the ASME 2013 15th International Conference on Environmental Remediation and Radioactive Waste Management, ICEM2013-96282 (2013)Google Scholar
  82. 82.
    Thaysen, E.M., Jacques, D., Jessen, S., Andersen, C.E., Laloy, E., Ambus, P., Postma, D., Jakobsen, I.: Controls on carbon dioxide fluxes across the unsaturated zone of cropped and unplanted soil mesocosms. Biogeosciences 11, 4251–4299 (2014)Google Scholar
  83. 83.
    Zheng, C, Wang, P.P.: MT3DMS: A modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in ground water systems: documentation and user’s guide. Contract Report SERDP-99–1, U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi (available at http://hydro.geo.ua.edu/mt3d) (1999)
  84. 84.
    Prommer, H., Post, V.E.A.: PHT3D, A Reactive multicomponent transport model for saturated porous media. User’s Manual v2.10 (2010). http://www.pht3d.org
  85. 85.
    Prommer, H., Barry, D.A., Zheng, C.: MODFLOW/MT3DMS-based reactive multicomponent transport modeling. Ground Water 41, 247–257 (2003)Google Scholar
  86. 86.
    Appelo, C.A.J., Rolle, M.: PHT3D: A reactive multicomponent transport model for saturated porous media. Ground Water 5(48), 627–632 (2010)Google Scholar
  87. 87.
    Zuurbier, K.G., Hartog, N., Valstar, J., Post, V.E.A., van Breukelen, B.M.: The impact of low-temperature seasonal aquifer thermal energy storage (SATES) systems on chlorinated solvent contaminated groundwater: modeling of spreading and degradation. J. Contam. Hydrol. 147, 1–13 (2013)Google Scholar
  88. 88.
    Wallis, I., Prommer, H., Post, V.E.A., Vandenbohede, A., Simmons, C.T.: Simulating MODFLOW-based reactive transport under radially symmetric flow conditions. Groundwater 51, 398–413 (2013)Google Scholar
  89. 89.
    Wu, M.Z., Reynolds, D.A., Prommer, H., Fourie, A., Thomas, D.G.: Numerical evaluation of voltage gradient constraints on electrokinetic injection of amendments. Adv. Water Resour. 38, 60–69 (2012)Google Scholar
  90. 90.
    Chiang, W.H., 2nd ed.: 3D Groundwater modeling with PMWIN, p. 397. Springer-Verlag, The Netherlands (2005)Google Scholar
  91. 91.
    Nagel, T, Shao, H., Singh, A.K., Watanabe, N., Roßkopf, C., Linder, M., Wörner, A., Kolditz, O.: Non-equilibrium thermochemical heat storage in porous media: Part 1 – conceptual model. Energy 60, 254–270 (2013)Google Scholar
  92. 92.
    Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J.O., Fischer, T., Görke, U.J., Kalbacher, T., Kosakowski, G., McDermott, C.I., Park, C.H., Radu, F., Rink, K., Shao, H., Shao, HB, Sun, F., Sun, Y.Y., Singh, A.K., Taron, J., Walther, M., Wang, W., Watanabe, N., Wu, N., Xie, M., Xu, W., Zehner, B.: OpenGeoSys: An open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ. Earth Sci. 67, 589–599 (2012)Google Scholar
  93. 93.
    Rutqvist, J., Barr, D., Birkholzer, J.T., Chijimatsu, M., Kolditz, O., Liu, Q., Oda, Y., Wang, W., Zhang, C.: Results from an international simulation study on coupled thermal, hydrological, and mechanical processes near geological nuclear waste repositories. J. Nucl. Technol. 163, 101–109 (2008)Google Scholar
  94. 94.
    Kolditz, O., Bauer, S., Beyer, C., Böttcher, N., Dietrich, P., Görke, U-J., Kalbacher, T., Park, C-H., Sauer, U., Schütze, C., Shao, H.B., Singh, A.K., Taron, J., Wang, W., Watanabe, N.: A systematic benchmarking approach for geologic CO2 injection and storage. Environ. Earth Sci. 67, 613–632 (2012)Google Scholar
  95. 95.
    Mukhopadhyay, S., Birkholzer, J.T., Nicot, J.P., Hosseini, S.A.: A single site multi-model comparative study for CO2 injection field test: An introduction to Sim-SEQ. Environ. Earth Sci. 67, 601–611 (2012)Google Scholar
  96. 96.
    Kolditz, O., Shao, H., Görke, U-J., Wang, W. (eds.): Thermo-hydro-mechanical-chemical processes in fractured porous media. Lecture Notes in Computational Science and Engineering, Vol. 86. Springer, Heidelberg (2012)Google Scholar
  97. 97.
    Park, C-H., Beyer, C., Bauer, S., Kolditz, O.: A study of preferential flow in heterogeneous media using random walk particle tracking. Geosci. J. 12, 285–297 (2008)Google Scholar
  98. 98.
    Gräbe, A., Rink, K., Fischer, T., Sun, F., Wang, W., Rödiger, T., Siebert, C., Kolditz, O.: Numerical analysis of the groundwater regime in the Western Dead Sea Escarpment. Environ. Earth Sci. 69, 571–586 (2013)Google Scholar
  99. 99.
    Singh, A.K., Baumann, G., Henninges, J., Görke, U-J., Kolditz, O.: Numerical analysis of thermal effects during carbon dioxide injection with enhanced gas recovery: A theoretical case study for the Altmark gas field. Environ. Earth Sci. 67, 497–509 (2012)Google Scholar
  100. 100.
    Wang, W., Rutqvist, J., Gorke, U-J., Birkholzer, J.T., Kolditz, O.: Non-isothermal flow in low permeable porous media: A comparison of unsaturated and two-phase flow approaches. Environ. Earth Sci. 62, 1197–1207 (2011)Google Scholar
  101. 101.
    Kolditz, O, de Jonge, J.: Non-isothermal two-phase flow in porous media. Comput. Mech. 33, 345–364 (2004)Google Scholar
  102. 102.
    Park, C.-H., Boettcher, N., Wang, W., Kolditz, O.: Are upwind techniques in multi-phase flow models necessary. J Comp. Phys. 230, 8304–8312 (2011)Google Scholar
  103. 103.
    Delfs, J.-O., Park, C.-H., Kolditz, O.: A sensitivity analysis of Hortonian flow. Adv. Water Resour. 32, 1386–1395 (2009)Google Scholar
  104. 104.
    Böttcher, N., Kolditz, O., Liedl, R.: Evaluation of equations of state for CO2 in numerical simulations. Environ. Earth Sci. 67, 481–495 (2012)Google Scholar
  105. 105.
    Watanabe, N., McDermott, C., Wang, W., Taniguchi, T., Kolditz, O.: Uncertainty analysis of thermo-hydro-mechanical processes in heterogeneous porous media. Comput. Mech. 45, 263–280 (2010)Google Scholar
  106. 106.
    Kalbacher, T., Delfs, J.O., Shao, H., Wang, W., Walther, M., Samaniego, L., Schneider, C., Musolff, A., Centler, F., Sun, F., Hildebrandt, A., Liedl, R., Borchardt, D., Krebs, P., Kolditz, O.: The IWAS-ToolBox: Software coupling for an integrated water resources management. Environ. Earth Sci. 65, 1367–1380 (2012)Google Scholar
  107. 107.
    Xie, M., Bauer, S., Kolditz, O., Nowak, T., Shao, H.: Numerical simulation of reactive processes in an experiment with partially saturated bentonite. J Contam. Hydrol. 83, 122–147 (2006)Google Scholar
  108. 108.
    Shao, H., Kolditz, O., Kulik, D.A., Pfingsten, W., Kosakowski, G.: Reactive transport of multiple non-ideal solid solutions. Appl. Geochem. 24, 1287–1300 (2009)Google Scholar
  109. 109.
    Beyer, C., Bauer, S., Kolditz, O.: Uncertainty assessment of contaminant plume length estimates in heterogeneous aquifers. J. Contam. Hydrol. 87, 73–95 (2006)Google Scholar
  110. 110.
    Centler, F., Shao, H., Park, C-H, de Biase, C., Kolditz, O., Thullner, M.: GeoSysBRNS – a flexible multi-dimensional reactive transport model for simulating biogeochemical subsurface processes. Comput. Geosci. 36, 397–405 (2010)Google Scholar
  111. 111.
    Rink, K., Kalbacher, T., Kolditz, O.: Visual data management for hydrological analysis. Environ. Earth Sci. 65, 1395–1403 (2012)Google Scholar
  112. 112.
    van der Lee, J., De Windt, L., Lagneau, V., Goblet, P.: Module-oriented modeling of reactive transport with HYTEC. Comput. Geosci. 29, 265–275 (2003)Google Scholar
  113. 113.
    Wolery, T.: EQ3/6. A software package for geochemical modelling of aqueous systems: Package overview and installation guide (version 7.0). Technical Report UCRL-MA-110662 PT I ed. Lawrence Livermore National Laboratory, USA (1992)Google Scholar
  114. 114.
    van der Lee, J., Lagneau, V.: Rigorous methods for reactive transport in unsaturated porous medium coupled with chemistry and variable porosity. In: Miller, C.T., Farthing, M.W., Gray, W.G., Pinder, G.F. (eds.) Computational Methods in Water Resources (CMWR XV), vol. 48, pp 861–868. Elsevier (2004)Google Scholar
  115. 115.
    Lagneau, V., van der Lee, J.: Operator-splitting-based reactive transport models in strong feedback of porosity change: The contribution of analytical solutions for accuracy validation and estimator improvement. J. Contam. Hydrol. 112, 118–129 (2010)Google Scholar
  116. 116.
    Debure, M., De Windt, L., Frugier, P., Gin, S.: HLW glass dissolution in the presence of magnesium carbonate: Diffusion cell experiment and coupled modeling of diffusion and geochemical interactions. J. Nucl. Mater. 443, 507–521 (2013)Google Scholar
  117. 117.
    De Windt, L., Marsal, F., Corvisier, J., Pellegrini, D.: Modeling of oxygen gas diffusion and consumption during the oxic transient in a disposal cell of radioactive waste. Appl. Geochem. 41, 115–127 (2014)Google Scholar
  118. 118.
    Lagneau, V., Pipart, A., Catalette, H.: Reactive transport modelling and long term behaviour of CO2 sequestration in saline aquifers. Oil Gas Sci. Technol. 60, 231–247 (2005)Google Scholar
  119. 119.
    Jacquemet, N., Pironon, J., Lagneau, V., Saint-Marc, J.: Armouring of well cement in H 2S-CO 2 saturated brine by calcite coating – experiments and numerical modeling. Appl. Geochem. 27, 782–795 (2012)Google Scholar
  120. 120.
    De Windt, L., Devillers, P.: Modeling the degradation of Portland cement pastes by biogenic organic acids. Cem. Concr. Res. 40, 1165–1174 (2010)Google Scholar
  121. 121.
    De Windt, L., Deneele, D., Maubec, N.: Kinetics of lime/bentonite pozzolanic reactions at 20 and 50 °C: Batch tests and modeling. Cem. Concr. Res. 59, 34–42 (2014)Google Scholar
  122. 122.
    Dabo, D, Badreddine, R, De Windt, L, Drouadaine, I.: Ten-year chemical evolution of leachate and municipal solid waste incineration bottom ash used in a test road site. J. Hazard. Mater. 172, 904–913 (2007)Google Scholar
  123. 123.
    De Windt, L., Badreddine, R., Lagneau, V.: Long-term reactive transport modelling of stabilized/solidified waste: From dynamic leaching tests to disposal scenarios. J. Hazard. Mater. 139, 529–536 (2007)Google Scholar
  124. 124.
    De Windt, L., Badreddine, R.: Modelling of long-term dynamic leaching tests applied to solidified/stabilised waste. Waste Manag. 27, 1638–1647 (2007)Google Scholar
  125. 125.
    Corvisier, J., Bonvalot, A.F., Lagneau, V., Chiquet, P., Renard, S., Sterpenich, J., Pironon, J.: Impact of co-injected gases on CO2 storage sites: Geochemical modeling of experimental results. Proceedings of the International Conference on Greenhouse Gas Technology 11, vol. 37, pp. 3699–3710. Energy Procedia, Kyoto (2013)Google Scholar
  126. 126.
    Meeussen, J.C.: ORCHESTRA: An object-oriented framework for implementing chemical equilibrium models. Environ. Sci. Technol. 37, 1175–1182 (2003)Google Scholar
  127. 127.
    Farmer, J.G., Graham, M.C., Thomas, R.P., Licona-Manzur, C., Paterson, E., Campbell, C.D., Geelhoed, J.S., Lumsdon, D.G., Meeussen, J.C.L., Roe, M.J., Conner, A., Fallick, A.E., Bewley, R.J.F.: Assessment and modelling of the environmental chemistry and potential for remediative treatment of chromium-contaminated land. Environ. Geochem. Health 21, 331–33 (1999)Google Scholar
  128. 128.
    Geelhoed, J.S., Meeussen, J.C.L., Hillier, S., Lumsdon, D.G., Thomas, R.P., Farmer, J.G., Paterson, E.: Identification and geochemical modeling of processes controlling leaching of Cr(VI) and other major elements from chromite ore processing residue. Geochim. Cosmochim. Acta 66, 3927–3942 (2002)Google Scholar
  129. 129.
    Filius, J.D., Lumsdon, D.G., Meeussen, J.C.L., Hiemstra, T., Van Riemsdijk, W.H.: Adsorption of fulvic acid on goethite. Geochim. Cosmochim. Acta 64, 51–60 (2000)Google Scholar
  130. 130.
    Weng, L., Hiemstra, T., Meeussen, J.C.L., Koopal, L., Van Riemsdijk, W.H.: Interactions of calcium and fulvic acid at the goethite-water interface. Geochim. Cosmochim. Acta 69, 325–339 (2005)Google Scholar
  131. 131.
    Van Riemsdijk, W.H., Koopal, L.K., Kinniburgh, D.G., Benedetti, M.F., Weng, L.: Modeling the interactions between humics, ions, and mineral surfaces. Environ. Sci. Technol. 40, 7473–7480 (2006)Google Scholar
  132. 132.
    Vink, J.P.M., Meeussen, J.C.L.: BIOCHEM–ORCHESTRA: A tool for evaluating chemical speciation and ecotoxicological impacts of heavy metals on river flood plain systems. Environ. Pollut. 148, 833–841 (2007)Google Scholar
  133. 133.
    Nowack, B., Mayer, K.U., Oswald, S.E., Van Beinum, W., Appelo, C.A.J., Jacques, D., Seuntjens, P.: Verification and intercomparison of reactive transport codes to describe root-uptake. Plant Soil 285, 305–321 (2006)Google Scholar
  134. 134.
    Van der Sloot, H.A., van Zomeren, A.: Characterisation leaching tests and associated geochemical speciation modelling to assess long term release behaviour from extractive wastes. Mine Water Environ. 31, 92–103 (2012)Google Scholar
  135. 135.
    Brown, K.G., Arnold, J., Sarkar, S., Flach, G., van der Sloot, H., Meeussen, J.C.L., Kosson, D.S.: Modeling carbonation of high-level waste tank integrity and closure. In EPJ Web of Conferences 56, 05003, EDP Sciences (2013)Google Scholar
  136. 136.
    Sarkar, S., Kosson, D.S., Mahadevan, S., Meeussen, J.C.L., van der Sloot, H., Arnold, J.R., Brown, K.G.: Bayesian calibration of thermodynamic parameters for geochemical speciation modeling of cementitious materials. Cem. Concr. Res. 42, 889–902 (2012)Google Scholar
  137. 137.
    Xu, T., Pruess, K.: Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: 1, Methodology. Am. J. Sci. 301, 16–33 (2001)Google Scholar
  138. 138.
    Xu, T., Sonnenthal, E., Spycher, N., Pruess, K.: TOUGHREACT - a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic Media: Applications for geothermal injectivity and CO2 geologic sequestration. Comput. Geosci. 32, 145–165 (2006)Google Scholar
  139. 139.
    Xu, T., Spycher, N., Sonnenthal, E., Zhang, G., Zheng, L., Pruess, K.: TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Comput. Geosci. 37, 763–774 (2011)Google Scholar
  140. 140.
    Pruess, K., Oldenburg, C., Moridis, G.: TOUGH2 user’s guide, version 2.0. Lawrence Berkeley Laboratory Report LBL-43134, Berkeley, CA, p. 192 (1999)Google Scholar
  141. 141.
    Finsterle, S., Sonnenthal, E.L., Spycher, N.: Advances in subsurface modeling: The TOUGH suite of simulators. Comput. Geosci. 65, 2–12 (2014)Google Scholar
  142. 142.
    Pruess, K., Narasimhan, T.N.: On fluid reserves and the production of superheated steam from fractured, vapor-dominated geothermal reservoirs. J. Geophys. Res. 87, 9329–9339 (1982)Google Scholar
  143. 143.
    Dobson, P.F., Salah, S., Spycher, N., Sonnenthal, E.L.: Simulations of water rock interactions in the Yellowstone geothermal system using TOUGHREACT. Geothermics 33, 493–502 (2004)Google Scholar
  144. 144.
    Xu, T., Ontoy, Y., Molling, P., Spycher, N., Parini, M., Pruess, K.: Reactive transport modeling of injection well scaling and acidizing at the Tiwi field, Philippines. Geothermics 33, 477–491 (2004)Google Scholar
  145. 145.
    Wanner, C., Peiffer, L., Sonnenthal, E.L., Spycher, N., Iovenitti, J., Kennedy, B.M.: Reactive transport modeling of the Dixie Valley geothermal area: Insights on flow and geothermometry. Geothermics 51, 130–141 (2014)Google Scholar
  146. 146.
    Spycher, N., Sonnenthal, E.L., Apps, J.: Fluid flow and reactive transport around potential nuclear waste emplacement tunnels at Yucca Mountain, Nevada. J. Contam. Hydrol. 62–63, 653–674 (2003)Google Scholar
  147. 147.
    Sonnenthal, E.L., Ito, A., Spycher, N., Yui, M., Apps, J., Sugita, Y., Conrad, M., Kawakami, S.: Approaches to modeling coupled thermal, hydrological, and chemical processes In the Drift Scale Heater Test at Yucca Mountain. Int. J. Rock. Mech. Min. Sci. 42, 698–719 (2005)Google Scholar
  148. 148.
    Xu, T., Senger, R., Finsterle, S.: Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effects. Appl. Geochem. 23, 3423–3433 (2008)Google Scholar
  149. 149.
    Marty, N.C.M., Tournassat, C., Burnol, A., Giffaut, E., Gaucher, E.C.: Influence of reaction kinetics and mesh refinement on the numerical modelling of concrete/clay interactions. J. Hydrol. 364, 58–72 (2009)Google Scholar
  150. 150.
    Xu, T., Apps, J.A., Pruess, K.: Mineral sequestration of carbon dioxide in a sandstone–shale system. Chem. Geol. 217, 295–318 (2005)Google Scholar
  151. 151.
    Audigane, P, Gaus, I., Czernichowki-Lauriol, I., Pruess, K., Xu, T.: Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the Sleipner site. Am. J. Sci. 307, 974–1008 (2007)Google Scholar
  152. 152.
    Aradóttir, E.S.P., Sonnenthal, E.L., Björnsson, G., Jónsson, H.: Multidimensional reactive transport modeling of CO2 mineral sequestration in basalts at the Hellisheidi geothermal field, Iceland. Int. J. Greenh. Gas. Con. 9, 24–40 (2012)Google Scholar
  153. 153.
    Zheng, L., Spycher, N., Birkholzer, J., Xu, T., Apps, J., Kharaka, Y.: On modeling the potential impacts of CO2 sequestration on shallow groundwater: Transport of organics and co-injected H2S by supercritical CO2 to shallow aquifers. Int. J. Greenh. Gas. Con. 14, 113–127 (2013)Google Scholar
  154. 154.
    Dalkhaa, C., Shevalier, M., Nightingale, M.: Mayer, B.: 2-D reactive transport modeling of the fate of CO2 injected into a saline aquifer in the Wabamun Lake Area, Alberta, Canada. Appl. Geochem. 38, 10–23 (2013)Google Scholar
  155. 155.
    Wu, Y., Ajo-Franklin, J.B., Spycher, N., Hubbard, S.S., Zhang, G., Williams, K.H., Taylor, J., Fujita, Y., Smith, R.: Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation. Geochem. Trans. 12 (2011)Google Scholar
  156. 156.
    Meima, J.A., Graupner, T., Rammlmair, D.: Modeling the effect of stratification on cemented layer formation in sulfide-bearing mine tailings. Appl. Geochem. 27, 124–137 (2012)Google Scholar
  157. 157.
    Bea, S.A., Wainwright, H., Spycher, N., Faybishenko, B., Hubbard, S.S., Denham, M.E.: Identifying key controls on the behavior of an acidic-U (VI) plume in the Savannah River Site using reactive transport modeling. J. Contam. Hydrol. 151, 34–54 (2013)Google Scholar
  158. 158.
    Kim, J., Sonnenthal, E., Rutqvist, J.A.: A sequential implicit algorithm of chemo-thermo-poro-mechanics for fractured geothermal reservoirs. Computers and Geosciences (2014)Google Scholar
  159. 159.
    White, M.D., Oostrom, M.: STOMP subsurface transport over multiple phases version 4.0 user’s guide. Pacific Northwest National Laboratory, Washington (2006)Google Scholar
  160. 160.
    White, M.D., McGrail, B.P.: STOMP subsurface transport over multiple phases version 1.0, Addendum: ECKEChem equilibrium-conservation-kinetic equation chemistry and reactive transport. PNNL-15482. Pacific Northwest National Laboratory, Washington (2005)Google Scholar
  161. 161.
    Fang, Y.L., Yabusaki, S.B., Yeh, G.T.: A general simulator for reaction-based biogeochemical processes. Comput. Geosci. 32, 64–72 (2006)Google Scholar
  162. 162.
    Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., Curfman McInnes, L., Smith, B.F., Zhang, H.: PETSc Users Manual, ANL–95/11 – revision 3.4. Argonne National Laboratory (2013)Google Scholar
  163. 163.
    Nieplocha, J., Palmer, B., Tipparaju, V., Krishnan, M., Trease, H., Apra, E.: Advances, applications and performance of the Global Arrays Shared Memory Programming Toolkit. Int. J. High Perform. Comput. Appl. 20, 203–231 (2006)Google Scholar
  164. 164.
    Yeh, G.T., Tripathi, V.S.: HYDROGEOCHEM: A coupled model of HYDROlogical transport and GEOCHEMical equilibrium of multi component systems, ORNL 6371, Oak Ridge National Laboratory, p. 37831. Oak Ridge National Laboratory, Oak Ridge (1990)Google Scholar
  165. 165.
    Yeh, G.T., Siegel, M.D., Li, M.H.: Numerical modeling of coupled fluid Fflows and reactive transport including fast and slow chemical reactions. J. Contam. Hydrol. 379–390(2001), 47 (2001)Google Scholar
  166. 166.
    Yeh, G.T., Li, Y., Jardine, P.M., Burgos, W.D., Fang, Y.L., Li, M.H., Siegel, M.D.: HYDROGEOCHEM 4.0: A coupled model of fluid flow, thermal transport, and HYDROGEOCHEMical transport through saturated unsaturated media Version 4.0. ORNL/TM-2004/103, p. 37831. Oak Ridge National Laboratory, Oak Ridge (2004)Google Scholar
  167. 167.
    Yeh, G.T., Sun, J.T., Jardine, P.M., Burgos, W.D., Fang, Y.L., Li, M.H., Siegel, M.D.: HYDROGEOCHEM 5.0: A three dimensional model of coupled fluid flow, thermal transport, and HYDROGEOCHEMical transport through variably saturated conditions version 5.0. ORNL/TM-2004/107, p. 37831. Oak Ridge National Laboratory, Oak Ridge (2004)Google Scholar
  168. 168.
    Yeh, G.T., Tsai, C.H.: HYDROGEOCHEM 6.0: A two-dimensional model of coupled fluid flow, thermal transport, geomechanics, and HYDROGEOCHEMical transport through multiple phase systems version 6.0 (FACTM2D: A Model for multi-phase flow analysis and reactive chemical transport, thermal transport, and mechanics simulation, 2-dimensional version) - theoretical basis and numerical approximation. Graduate Institute of Applied Geology, National Central University, Jhongli (2013)Google Scholar
  169. 169.
    Yeh, G.T., Tsai, C.H., Ni, C.F.: HYDROGEOCHEM 6.0: A model to couple thermal-hydrology-mechanics-chemical (THMC) processes user guide. Graduate Institute of Applied Geology, National Central University, Jhongli (2013)Google Scholar
  170. 170.
    Yeh, G.T., Fang, Y.L., Zhang, F., Sun, J.T., Li, Y., Li, M.H., Siegel, M.D.: Numerical modeling of coupled fluid flow and thermal and reactive biogeochemical transport in porous and fractured media. Comput. Geosci. 14, 149–170 (2010)Google Scholar
  171. 171.
    Yeh, G.T., Tripathi, V.J., Gwo, J.P., Cheng, H.P., Cheng, R.J., Salvage, K.M., Li, M.H., Fang, Y.L., Li, Y., Sun, J.T., Zhang, F., Siegel, M.D.: Chapter 1: HYDROGEOCGEM: A coupled model of variably saturated flow, thermal transport, and reactive biogeochemical transport. Groundwater reactive transport models. In: Zhang, F., Yeh, G.T., Parker, J.C. (eds.) Bentham e-Books. Bentham Science Publishers (2012). http://www.bentham.org
  172. 172.
    Smith, J.M.: Chemical engineering kinetics, p. 676. R. R. Donnelley & Sons Company (1981)Google Scholar
  173. 173.
    Chilakapati, A., Ginn, T., Szecsody, J.: An analysis of complex reaction networks in groundwater modeling. Water Resour. Res. 34, 1767–1780 (1998)Google Scholar
  174. 174.
    Fang, Y., Yeh, G.T., Burgos, W.D.: A New Paradigm to model reaction-based biogeochemical processes. Water Resour. Res. 39, 1083–1108 (2003)Google Scholar
  175. 175.
    Kräutle, S., Knabner, P.: A reduction scheme for coupled multicomponent transport-reaction problems in porous media: Generalization to problems with heterogeneous equilibrium reactions. Water Resour. Res. 43, W03429 (2007). doi:10.1029/2005WR004465 Google Scholar
  176. 176.
    Yeh, G.T., Tsai, C.H., Fang, Y., Yabusaki, S., Li, M.H.: BIOGEOCHEM 1.5: A numerical model to simulate BIOGEOCHEMical reactions under multiple phase system. Graduate Institute of Applied Geology, National Central University, Jhongli (2014)Google Scholar
  177. 177.
    Yeh, G.T., Tsai, C.H.: User’s manual for BIOGEOCHEM 1.5. Graduate Institute of Applied Geology, National Central University, Jhongli (2014)Google Scholar
  178. 178.
    Yeh, G.T., Tripathi, V.S.: A critical evaluation of recent developments of hydrogeochemical transport models of reactive multi-chemical components. Water Resour. Res. 25, 93–108 (1989)Google Scholar
  179. 179.
    Liu, I-S, Cipolatti, R.A., Rincon, M.A.: Successive linear approximation for finite elasticity. Comput. Appl. Math. 29, 465–478 (2010)Google Scholar
  180. 180.
    Yeh, G.T., Tripathi, V.S.: A model for simulating transport of reactive multispecies components: Model development and demonstration. Water Resour. Res. 27, 3075–3094 (1991)Google Scholar
  181. 181.
    Gwo, J.P., D’Azevedo, E.F., Frenzel, H., Mayes, M., Yeh, G.T., Jardine, P.M., Salvage, K.M., Hoffman, F.M.: HBGC123D: A high performance computer model of coupled hydrogeological and bigeochemical processes. Comput. Geosci. 27, 1231–1242 (2001)Google Scholar
  182. 182.
    Yeh, G.T., Gwo, J.P., Siegel, M.D., Li, M.H., Fang, Y.L., Zhang, F., Luo, W.S., Yabusaki, S.B.: Innovative mathematical modeling in environmental remediation. J. Environ. Radioact. (2011). doi:10.1016/j.jenvrad.2011.06.010 Google Scholar
  183. 183.
    Kent, D.B., Davis, J.A., Anderson, L.C.D., Rea, B.A., Waite, T.D.: Transport of chromium and selenium in the suboxic zone of a shallow aquifer: Influence of redox and adsorption reactions. Water Resour. Res. 30, 1099–1114 (1994)Google Scholar
  184. 184.
    Abrams, R.H.: A compartmentalized approach to simulating redox zones in contaminated aquifers. PhD Dissertation, Department of Geological and Environmental Sciences, Stanford University, Palo Alto, California (1999)Google Scholar
  185. 185.
    Bahr, J.M.: Keating, E.H.:. Redox geochemistry of shallow groundwater discharging to Allequash Creek in northern Wisconsin. WRC GRR 95-08. Water Resources Center, University of Wisconsin-Madison, p. 41 (1995)Google Scholar
  186. 186.
    Tournassat, C., Appelo, C.A.J.: Modelling approaches for anion-exclusion in compacted Na-bentonite. Geochim. Cosmochim. Acta 75, 3698–3710 (2011)Google Scholar
  187. 187.
    Steefel, C.I., Van Cappellen, P.: A new kinetic approach to modeling water-rock interaction: The role of nucleation, precursors, and Ostwald ripening. Geochim. Cosmochim. Acta 54, 2657–2677 (1990)Google Scholar
  188. 188.
    Steefel, C.I., Lasaga, A.C.: A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. Am. J. Sci. 294, 529–592 (1994)Google Scholar
  189. 189.
    Steefel, C.I., Lichtner, P.C.: Diffusion and reaction in rock matrix bordering a hyperalkaline fluid-filled fracture. Geochim. Cosmochim. Acta 58, 3592–3612 (1994)Google Scholar
  190. 190.
    Steefel, C.I., Lichtner, P.C.: Multicomponent reactive transport in discrete fractures: I. Controls on reaction front geometry. J. Hydrol. 209, 186–199 (1998)Google Scholar
  191. 191.
    Steefel, C.I., Lichtner, P.C.: Multicomponent reactive transport in discrete fractures: II. Infiltration of hyperalkaline groundwater at Maqarin, Jordan, a natural analogue site. J. Hydrol. 209, 200–224 (1998)Google Scholar
  192. 192.
    Giambalvo, E.R., Steefel, C.I., Fisher, A.T., Rosenberg, N.D., Wheat, C.G.: Effect of fluid-sediment reaction on hydrothermal fluxes of major elements, eastern flank of the Juan de Fuca Ridge. Geochim. Cosmochim. Acta 66, 1739–1757 (2002)Google Scholar
  193. 193.
    Maher, K., Steefel, C.I., DePaolo, D., Viani, B.: The mineral dissolution rate conundrum: Insights from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments. Geochim. Cosmochim. Acta 70, 337–363 (2006)Google Scholar
  194. 194.
    Maher, K., Steefel, C.I., White, A.F., Stonestrom, D.A.: The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California. Geochim. Cosmochim. Acta 73, 2804–2831 (2009)Google Scholar
  195. 195.
    Navarre-Sitchler, A., Steefel, C.I., Sak, P.B., Brantley, S.L.: A reactive transport model for weathering rind formation on basalt. Geochim. Cosmochim. Acta 75, 7644–7667 (2011)Google Scholar
  196. 196.
    Navarre-Sitchler, A., Steefel, C.I., Yang, L., Tomutsa, L., Brantley, S.L.: Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast. J. Geophys. Res., 114 (2009). doi:10.1029/2008JF001060
  197. 197.
    Li, L., Gawande, N., Kowalsky, M.B., Steefel, C.I., Hubbard, S.S.: Physicochemical heterogeneity controls on uranium bioreduction rates at the field scale. Environ. Sci. Technol. 45, 9959–9966 (2011)Google Scholar
  198. 198.
    Li, L., Steefel, C.I., Kowalsky, M.B., Englert, A., Hubbard, S.S.: Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during uranium bioremediation at Rifle, Colorado. J. Contam. Hydrol. 11, 45–63 (2010)Google Scholar
  199. 199.
    Li, L., Steefel, C.I., Williams, K.H., Wilkins, M.J., Hubbard, S.S.: Mineral transformation and biomass accumulation during uranium bioremediation, Rifle, Colorado. Environ. Sci. Technol. 43, 5429–5435 (2009)Google Scholar
  200. 200.
    Druhan, J.L., Steefel, C.I., Molins, S., Williams, K.H., Conrad, M.E., DePaolo, D.J.: Timing the onset of sulfate reduction over multiple subsurface acetate amendments by measurement and modeling of sulfur isotope fraction. Environ. Sci. Technol. 46, 8895–8902 (2012)Google Scholar
  201. 201.
    Druhan, J.L., Steefel, C.I., Conrad, M.E., DePaolo, D.J.: A large column analog experiment of stable isotope variations during reactive transport: I. A comprehensive model of sulfur cycling and δ 34S fractionation. Geochim. Cosmochim. Acta 124, 366–393 (2014)Google Scholar
  202. 202.
    Mayer, K.U., Frind, E.O., Blowes, D.W.: Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour. Res. 38, 1174 (2002). doi:10.1029/2001WR000862. Google Scholar
  203. 203.
    Cheng, L.: Dual porosity reactive transport modeling, PhD thesis. University of Sheffield, UK (2006)Google Scholar
  204. 204.
    Cheng, L., Lerner, D., Thornton, S., Mayer, K.U.: Managing MTBE attenuation in a dual porosity chalk aquifer – field observations and modelling results. Proceedings of ModelCARE 2009 Groundwater and the Environment, p. 341. IAHS Publishing, Wuhan (2009)Google Scholar
  205. 205.
    Amos, R.T., Mayer, K.U.: Investigating the role of gas bubble formation and entrapment in contaminated aquifers: Reactive transport modeling. J. Contam. Hydrol. 87, 123–154 (2006)Google Scholar
  206. 206.
    Amos, R.T., Mayer, K.U.: Investigating ebullition in a sand column using dissolved gas analysis and reactive transport modelling, Environ. Sci. Technol. 40, 5361–5367 (2006)Google Scholar
  207. 207.
    Molins, S., Mayer, K.U., Scheutz, C., Kjeldsen, P.: Role of transport mechanisms in the attenuation of landfill gas in cover soils: A multicomponent modelling study. J. Environ. Qual. 37, 459–468 (2008)Google Scholar
  208. 208.
    Molins, S., Mayer, K.U., Amos, R.T., Bekins, B.A.: Vadose zone attenuation of organic compounds at a crude oil spill site - Interactions between biogeochemical reactions and multicomponent gas transport. J. Contam. Hydrol. 112, 15–29 (2010)Google Scholar
  209. 209.
    Henderson, T., Mayer, K.U., Parker, B., Al, T.: Three-dimensional density-dependent flow and multicomponent reactive transport modeling of chlorinated solvent oxidation by potassium permanganate. J. Contam. Hydrol. 106, 195–211 (2009)Google Scholar
  210. 210.
    Bea, S.A., Mayer, K.U., MacQuarrie, K.T.B.: Modelling reactive transport in sedimentary rock environments - Phase II MIN3P-THCm code enhancements and illustrative simulations for a glaciation scenario. Technical report: NWMO TR-2011-13 (2011)Google Scholar
  211. 211.
    Harvie, C.E., Moller, N., Weare, J.H.: The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system to high ionic strengths at 25 oC. Geochim. Cosmochim. Acta 48, 723–751 (1984)Google Scholar
  212. 212.
    Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)Google Scholar
  213. 213.
    Monnin, C.: Density calculation and concentration scale conversions for natural waters. Comput. Geosci. 20, 1435–1445 (1994)Google Scholar
  214. 214.
    Neuzil, C.: Hydromechanical coupling in geologic processes. Hydrogeol. J. 11, 41–83 (2003)Google Scholar
  215. 215.
    Bea, S., Wilson, S., Mayer, K.U., Dipple, G., Power, I., Gamazo, P.: Reactive transport modeling of natural carbon sequestration in ultramafic mine tailings. Vadose Zone J. 11, 1–17 (2012)Google Scholar
  216. 216.
    Sihota, N.J., Mayer, K.U.: Characterizing vadose zone hydrocarbon biodegradation using CO 2-effluxes, isotopes, and reactive transport modeling. Vadose Zone J., 11 (2012). doi:10.2136/vzj2011.0204
  217. 217.
    Miller, G.R., Rubin, Y., Mayer, K.U., Benito, P.H.: Modeling vadose zone processes during land application of food-processing waste water in California’s Central Valley. J. Environ. Qual. 37, 43–57 (2008)Google Scholar
  218. 218.
    Gérard, F., Tinsley, M., Mayer, K.U.: Preferential flow revealed by hydrologic modeling based on predicted hydraulic properties and intensive water content monitoring. Soil Sci. Soc. Am. J. 68, 1526–1538 (2004)Google Scholar
  219. 219.
    Lichtner, P.C., Hammond, G.E., Lu, C., Karra, S., Bisht, G., Andre, B., Mills, R.T., Kumar, J.: PFLOTRAN User manual: A Massively Parallel Reactive Flow and Transport Model for Describing Surface and Subsurface Processes (2013)Google Scholar
  220. 220.
    Goode, D.J.: Direct simulation of groundwater age. Water Resour. Res. 32, 289–296 (1996)Google Scholar
  221. 221.
    Hammond, G.E., Lichtner, P.C.: Field-scale model for the natural attenuation of uranium at the Hanford 300 area using high performance computing. Wat. Res. Res 46, 1–31 (2010)Google Scholar
  222. 222.
    Lichtner, P.C., Karra, S.: Modeling multiscale-multiphase-multicomponent reactive flows in porous media: Application to CO2 sequestration and enhanced geothermal energy using PFLOTRAN. In: Al-Khoury, R., Bundschuh, J. (eds.) Computational Models for CO2 Geo-sequestration & Compressed Air Energy Storage, pp 81–136. CRC Press (2014)Google Scholar
  223. 223.
    Karra, S., Painter, S.L., Lichtner, P.C.: Three-phase numerical model for subsurface hydrology in permafrost-affected regions. Cryosphere Discuss. 8, 149–185 (2014)Google Scholar
  224. 224.
    de Vries, L.M., Molinero, J., Ebrahimi, H., Svensson, U., Lichtner, P.: High performance reactive transport simulation of hyperalkaline plume migration in fractured rocks. Mineral. Mag. 77, 982 (2013)Google Scholar
  225. 225.
    Navarre-Sitchler, A.K., Maxwell, R.M., Siirila, E.R., Hammond, G.E., Lichtner, P.C.: Elucidating geochemical response of shallow heterogeneous aquifers to CO2 leakage using high-performance computing: Implications for monitoring of CO2 sequestration. Adv. Water Resour. 53, 45–55 (2013)Google Scholar
  226. 226.
    Steefel, C.I, DePaolo, D., Lichtner, P.C.: Reactive transport modeling: An essential tool and a new research approach for the Earth sciences. Earth Planet. Sci. Lett. 240, 539–558 (2005)Google Scholar
  227. 227.
    Gibson, B.D., Amos, R.T., Blowes, D.W.: S-34/S-32 fractionation during sulfate reduction in groundwater treatment systems: Reactive transport modeling. Env. Sci. Technol. 45, 2863–2870 (2011)Google Scholar
  228. 228.
    Greskowiak, J., Prommer, J.H., Liu, C., Post, V.E.A., Ma, R., Zheng, C., Zheng, C., Zachara, J.M.: Comparison of parameter sensitivities between a laboratory and field-scale model of uranium transport in a dual domain, distributed rate reactive system. Water Resour. Res. 46, 9: W09509 (2010)Google Scholar
  229. 229.
    Doherty, J.: PEST: A unique computer program for model-independent parameter optimisation. Water Down Under 94: Groundwater/Surface Hydrology Common Interest Papers; Preprints of Papers, p. 551 (1994)Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • C. I. Steefel
    • 1
  • C. A. J. Appelo
    • 2
  • B. Arora
    • 1
  • D. Jacques
    • 3
  • T. Kalbacher
    • 4
  • O. Kolditz
    • 4
  • V. Lagneau
    • 5
  • P. C. Lichtner
    • 6
  • K. U. Mayer
    • 7
  • J. C. L. Meeussen
    • 8
  • S. Molins
    • 1
  • D. Moulton
    • 9
  • H. Shao
    • 4
  • J. Šimůnek
    • 10
  • N. Spycher
    • 1
  • S. B. Yabusaki
    • 11
  • G. T. Yeh
    • 12
  1. 1.Earth Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Hydrochemical ConsultantAmsterdamthe Netherlands
  3. 3.Institute for Environment, Health, and Safety, Belgian Nuclear Research CenterMolBelgium
  4. 4.Department of Environmental InformaticsHelmholtz Centre for Environmental ResearchLeipzigGermany
  5. 5.University, Centre de GéosciencesFontainebleau CedexFrance
  6. 6.Lichtner OFM ResearchSanta FeUSA
  7. 7.Earth and Ocean SciencesUniversity of British ColumbiaVancouverCanada
  8. 8.WU Environmental SciencesUniversity of WageningenWageningenthe Netherlands
  9. 9.Mathematical Modeling and AnalysisLos Alamos National LaboratoryLos AlamosUSA
  10. 10.Department of Environmental SciencesUC RiversideRiversideUSA
  11. 11.Earth Systems Science DivisionPacific Northwest National LaboratoryRichlandUSA
  12. 12.National Central UniversityJhongliTaiwan

Personalised recommendations