Parallel simulation of groundwater non-point source pollution using algebraic multigrid preconditioners

Abstract

The simulation of non-point source pollution in agricultural basins is a computationally demanding process due to the large number of individual sources and potential pollution receptors (e.g., drinking water wells). In this study, we present an efficient computational framework for parallel simulation of diffuse pollution in such groundwater basins. To derive a highly detailed velocity field, we employed algebraic multigrid (AMG) preconditioners to solve the groundwater flow equation. We compare two variants of AMG implementations, the multilevel preconditioning provided by Trilinos and the BoomerAMG provided by HYPRE. We also perform a sensitivity analysis on the configuration of AMG methods to evaluate the application of these libraries to groundwater flow problems. For the transport simulation of diffuse contamination, we use the streamline approach, which decomposes the 3D transport problem into a large number of 1D problems that can be executed in parallel. The proposed framework is applied to a 2,600-km2 groundwater basin in California discretized into a grid with over 11 million degrees of freedom. Using a Monte Carlo approach with 200 nitrate loading realizations at the aquifer surface, we perform a stochastic analysis to quantify nitrate breakthrough prediction uncertainty at over 1,500 wells due to random, temporally distributed nitrate loading. The results show that there is a significant time lag between loading and aquifer response at production wells. Generally, typical production wells respond after 5–50 years depending on well depth and screen length, while the prediction uncertainty for nitrate in individual wells is very large—approximately twice the drinking water limit for nitrate.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Adams, M., Brezina, M., Hu, J., Tuminaro, R.: Parallel multigrid smoothing: polynomial versus Gauss-Seidel. J. Comput. Phys. 188 (2), 593–610 (2003). doi:10.1016/S0021-9991(03)00194-3

    Article  Google Scholar 

  2. 2.

    Aller, L., Bennett, T., Lehr, J. H., Petty, R. J., Hackett, G.: DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeologic settings, Rep. EPA-600/2-87-035, pp. 641, U.S. Environ. Prot. Agency, Ada, Okla (1987)

  3. 3.

    Al-Mahallawi, K., Mania, J., Hani, A., Shahrour, I.: Using of neural networks for the prediction of nitrate groundwater contamination in rural and agricultural areas. Environ. Earth. Sci. 65, 917–928 (2012). doi:10.1007/s12665-011-1134-5

    Article  Google Scholar 

  4. 4.

    Almasri, M. N., Kaluarachchi, J.: Modeling nitrate contamination of groundwater in agricultural watersheds. J. Hydrol. 343, 211–229 (2007)

    Article  Google Scholar 

  5. 5.

    Amestoy, P. R., Duff, I. S., l’Excellent, J.-Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184 (2–4), 501–520 (2000). doi:10.1016/S0045-7825(99)00242-X

    Article  Google Scholar 

  6. 6.

    Ashby, S. F., Falgout, R. D.: A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations. Nucl. Sci. Eng. 124, 145–159 (1996)

    Google Scholar 

  7. 7.

    Bandilla, K. W., Rabideau, A. J., Jankovic, I.: A parallel mesh-free contaminant transport model based on the Analytic Element and Streamline Methods. Adv. Water Resour. 32, 1143–1153 (2009)

    Article  Google Scholar 

  8. 8.

    Batycky, R. P., Blunt, M. J., Thiele, M. R.: A 3D field-scale streamline-based reservoir simulator. SPE Reserv. Eng. 12 (4), 246–254 (1997)

    Article  Google Scholar 

  9. 9.

    Benali, A.: Groundwater modelling: towards an estimation of the acceleration factors of iterative methods via an analysis of the transmissivity spatial variability. Compt. Rendus Geosci. 345 (1), 36–46 (2013)

    Article  Google Scholar 

  10. 10.

    Beraldo, V. T., Blunt, M. J., Schiozer, D. J.: Compressible streamline-based simulation with changes in oil composition. SPE Reserv. Eval. Eng. 12 (6), 963–973 (2009)

    Article  Google Scholar 

  11. 11.

    Bernardo, D. J., Mapp, H. P., Sabagh, G. J., Geleta, S., Watkins, K. B., Elliott, R. L., Stone, J. F.: Economic and environmental impacts of water quality protection policies 2. Application to the Central High Plains. Water Resour. Res. 29 (9), 3081–3091 (1993)

    Article  Google Scholar 

  12. 12.

    Blunt, M.J., Liu, K., Thiele, M.R.: A generalized streamline method to predict reservoir flow. Petrol. Geosci. 2 (2), 259–269 (1996). doi:10.1144/petgeo.2.3.259

    Article  Google Scholar 

  13. 13.

    Bonton, A., Bouchard, C., Rouleau, A., Rodriguez, M. J., Therrien, R.: Calibration and validation of an integrated nitrate transport model within a well capture zone. J. Contam. Hydrol. 128, 1–18 (2012)

    Article  Google Scholar 

  14. 14.

    Bonton, A., Rouleau, A., Bouchard, C., Rodriguez, M. J.: Nitrate transport modeling to evaluate source water protection scenarios for a municipal well in an agricultural area. Agr. Syst. 104, 429–439 (2011)

    Article  Google Scholar 

  15. 15.

    Brandt, A., Livne, O.E.: Multigrid Techniques: 1984 guide with applications to fluid dynamics Rev. ed. SIAM (2011)

  16. 16.

    Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial 2nd Edn, SIAM, pp. 193 (2000)

  17. 17.

    Bundy, B. C., Hales, H. B.: A streamline reservoir simulator with dynamic gridding. J. Can. Petrol. Technol. 47 (2), 32–38 (2008)

    Google Scholar 

  18. 18.

    Burow, K. R., Nolan, B. T., Rupert, M. G., Dubrovsky, N. M.: Nitrate in groundwater of the United States, 1991-2003. Environ. Sci. Technol. 44, 4988–4997 (2010). doi:10.1021/es100546y

    Article  Google Scholar 

  19. 19.

    Cirpka, O. A., Kitanidis, P. K.: Characterization of mixing and dilution in heterogeneous aquifers by means of local temporal moments. Water Resour. Res. 36 (5), 1221–1236 (2000)

    Article  Google Scholar 

  20. 20.

    Collins, A. L., McGonigle, D. F.: Monitoring and modelling diffuse pollution from agriculture for policy support: UK and European experience. Environ. Sci. Policy 11 (1), 97–101 (2008)

    Article  Google Scholar 

  21. 21.

    Davis, T. A.: Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method. ACM Trans. Math. Soft. 30 (1), 196–199 (2004)

    Article  Google Scholar 

  22. 22.

    Davis, T.A., Palamadai Natarajan, E.: Algorithm 907 KLU, A direct sparse solver for circuit simulation problems. ACM Trans. Math. Soft. 37 (2) (2010). doi:10.1145/1824801.1824814. Article 36

  23. 23.

    Elci, A., Karadas, D., Fıstıkoglu, O.: The combined use of MODFLOW and precipitation-runoff modeling to simulate groundwater flow in a diffuse-pollution prone watershed. Water Sci. Technol. 62 (1), 180–188 (2010)

    Article  Google Scholar 

  24. 24.

    Enzenhoefer, R., Bunk, T., Nowak, W.: Nine steps to risk-informed wellhead protection and management: a case study. Ground Water (2014)

  25. 25.

    Falgout, R.D., Yang, U.M.: Hypre: A library of high performance preconditioners in computational science—ICCS 2002 part III. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J.J., Hoekstra, A.G. (eds.) vol. 2331 of Lecture Notes in Computer Science, pp 632–641. Springer (2002)

  26. 26.

    Fang, J., Ding, Y.-J.: Assessment of groundwater contamination by NO3 using geographical information system in the Zhangye Basin, Northwest China. Environ. Earth Sci. 60, 809–816 (2010). doi:10.1007/s12665-009-0218-y

    Article  Google Scholar 

  27. 27.

    Flipo, N., Jeannee, N., Poulin, M., Even, S., Ledoux, E.: Assessment of nitrate pollution in the Grand Morin aquifers (France): combined use of geostatistics and physically based modeling. Environ. Pollut. 146 (1), 241–256 (2007). doi:10.1016/j.envpol.2006.03.056

    Article  Google Scholar 

  28. 28.

    Galbiati, L., Bouraoui, F., Elorza, F. J., Bidoglio, G.: Modeling diffuse pollution loading into a Mediterranean lagoon: development and application of an integrated surface-subsurface model tool. Ecol. Model 193, 4–18 (2006)

    Article  Google Scholar 

  29. 29.

    Gallardo, A.H., Reyes-Borja, W., Tase, N.: Flow and patterns of nitrate pollution in groundwater: a case study of an agricultural area in Tsukuba City, Japan. Environ. Geol. 48, 908–919 (2005). doi:10.1007/s00254-005-0029-8

    Article  Google Scholar 

  30. 30.

    Gee, M.W., Siefert, C.M., Hu, J.J., Tuminaro, R.S., Sala, M.G.: ML 5.0 Smoothed Aggregation User’s Guide, Sandia National Laboratories, SAND2006-2649 (2006)

  31. 31.

    Gelhar, L.W., Welty, C., Rehfeldt, K.R.: A critical review of data on field-scale dispersion in aquifers. Water Resour. Res. 28 (7), 1955–1974 (1992). doi:10.1029/92WR00607

    Article  Google Scholar 

  32. 32.

    Geuzaine, C., Remacle, J.F.: Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79 (11), 1309–1331 (2009)

    Article  Google Scholar 

  33. 33.

    Ginn, T.: Stochastic–convective transport with nonlinear reactions and mixing: finite streamtube ensemble formulation for multicomponent reaction systems with intra-streamtube dispersion. J. Contam. Hydrol. 47, 1–8 (2001)

    Article  Google Scholar 

  34. 34.

    Green, C.T., Böhlke, J.K., Bekins, B.A., Phillips, S.P.: Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer. Water Resour. Res. 46, W08525 (2010). doi:10.1029/2009WR008903

    Google Scholar 

  35. 35.

    Griebel, M., Metsch, B., Oeltz, D., Schweitzer, M.A.: Coarse grid classification: a parallel coarsening scheme for algebraic multigrid methods. Numer. Linear Algebra Appl. 13 (1), 193–214 (2006). doi:10.1002/nla.482

    Article  Google Scholar 

  36. 36.

    Harter, T., Morel-Seytoux, H.: Peer review of the IWFM, MODFLOW and HGS model codes: potential for water management applications in California’s Central Valley and other irrigated groundwater basins. Final Report, California Water and Environmental Modeling Forum, August 2013, Sacramento (2013). http://www.cwemf.org

  37. 37.

    Harter, T., Lund, J.R., Darby, J., Fogg, G.E., Howitt, R., Jessoe, K.K., Pettygrove, G.S., Quinn, J.F, Viers, J.H., Boyle, D.B., Canada, H.E., DeLaMora, N., Dzurella, K.N., Fryjoff-Hung, A., Hollander, A.D., Honeycutt, K.L., Jenkins, M.W., Jensen, V.B., King, A.M., Kourakos, G., Liptzin, D., Lopez, E.M., Mayzelle, M.M., McNally, A., Medellin-Azuara, J., Rosenstock, T.S.: Addressing nitrate in California’s drinking water with a focus on Tulare Lake basin and Salinas Valley groundwater. Report for the State Water Resources Control Board Report to the Legislature. Center for Watershed Sciences,University of California, Davis, 78 p. (2012). http://groundwaternitrate.ucdavis.edu

  38. 38.

    Henson, V. E., Yang, U. M.: BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41, 155–177 (2000)

    Article  Google Scholar 

  39. 39.

    Herrera, P.A., Valocchi, A.J., Beckie, R.D.: A multidimensional streamline-based method to simulate reactive solute transport in heterogeneous porous media. Adv. Water Resour. 33, 711–727 (2010)

    Article  Google Scholar 

  40. 40.

    Heroux, M., Bartlett, R., Hoekstra, V.H.R., Hu, J., Kolda, T., Lehoucq, R., Long, K., Pawlowski, R., Phipps, E., Salinger, A., Thornquist, H., Tuminaro, R., Willenbring, J., William, A.: An overview of Trilinos, Sandia National Laboratories, SAND2003-2927 (2003)

  41. 41.

    Hewett, C.J.M., Quinn, P.F., Heathwaite, A.L., Doyle, A., Burke, S., Whitehead, P.G., Lerner, D.N.: A multi-scale framework for strategic management of diffuse pollution. Environ. Modell. Softw. 24, 74–85 (2009)

    Article  Google Scholar 

  42. 42.

    Higgins, J.P.T., Green, S. (eds.): Cochrane Handbook for Systematic Reviews of Interventions Version 5.0.0 [updated February 2008]. The Cochrane Collaboration, 2008. (2008). www.cochrane-handbook.org

  43. 43.

    Howden, N.J.K., Burt, T.P., Worrall, F., Mathias, S., Whelan, M.J.: Nitrate pollution in intensively farmed regions: what are the prospects for sustaining high-quality groundwater?. Water Resour. Res. 47, W00L02 (2011). doi:10.1029/2011WR010843

    Google Scholar 

  44. 44.

    HYPRE: Reference Manual, Lawrence Livermore National Laboratory (2008). http://computation.llnl.gov/casc/hypre/software.html

  45. 45.

    Jeong, D., Choe, J., Park, K.: Analyses of solute transport using streamline simulation and semianalytical solutions, Energy sources, part A:. Recover. Utilization Environ. Eff. 30 (11), 1027–1037 (2008). doi:10.1080/15567030601082399

    Article  Google Scholar 

  46. 46.

    Jiang, Y., Somers, G.: Modeling effects of nitrate from non-point sources on groundwater quality in an agricultural watershed in Prince Edward Island, Canada. Hydrogeol. J. 17, 707–724 (2009)

    Article  Google Scholar 

  47. 47.

    Joosten, L.T.A., Buijze, S.T., Jansen, D.M.: Nitrate in sources of drinking water? Dutch water companies aim at prevention. Environ. Pollut. 102 (S1), 487–492 (1998)

    Article  Google Scholar 

  48. 48.

    Kaown, D., Hyun, Y., Bae, G.-O., Lee, K.-K.: Factors affecting the spatial pattern of nitrate contamination in shallow groundwater. J. Environ. Qual. 36, 1479–1487 (2007)

    Article  Google Scholar 

  49. 49.

    Karypis, G.: A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices, Version 5.0. University of Minnesota, Minneapolis (2011)

    Google Scholar 

  50. 50.

    Khalil, A., Almasri, M.N., McKee, M., Kaluarachchi, J.J.: Applicability of statistical learning algorithms in groundwater quality modeling. Water Resour. Res. 41, W05010 (2005). doi:10.1029/2004WR003608

    Google Scholar 

  51. 51.

    Kourakos, G., Klein, F., Cortis, A., Harter, T.: A groundwater nonpoint source pollution modeling framework to evaluate long-term dynamics of pollutant exceedance probabilities in wells and other discharge locations. Water Resour. Res. 48, W00L13 (2012). doi:10.1029/2011WR010813

    Google Scholar 

  52. 52.

    Kourakos, G., Harter, T.: Vectorized simulation of groundwater flow and streamline transport. Environ. Modell. Soft. 52, 207–221 (2014). doi:10.1016/j.envsoft.2013.10.029

    Article  Google Scholar 

  53. 53.

    Ledoux, E., Gomez, E., Monget, J.M., Viavattene, C., Viennot, P., Ducharne, A., Benoit, M., Mignolet, C., Schott, C., Mary, B.: Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain. Sci. Total Environ. 375, 69–79 (2007). doi:10.1016/j.scitotenv.2006.12.002

    Article  Google Scholar 

  54. 54.

    Liao, L., Green, C.T., Bekins, B.A., Bohlke, J.K.: Factors controlling nitrate fluxes in groundwater in agricultural areas. Water Resour. Res. 48, W00L09 (2012). doi:10.1029/2011WR011008

    Google Scholar 

  55. 55.

    Liu, X.: Parallel modeling of three-dimensional variably saturated ground water flows with unstructured mesh using open source finite volume platform Openfoam. Eng. Appl. Comput. Fluid Mech. 7 (1), 223–238 (2013)

    Google Scholar 

  56. 56.

    Martin, C., Molenat, J., Gascuel-Odoux, C., Vouillamoz, J.-M., Robain, H., Ruiz, L., Faucheux, M., Aquilina, L.: Modelling the effect of physical and chemical characteristics of shallow aquifers on water and nitrate transport in small agricultural catchments. J. Hydrol. 326, 25–42 (2006)

    Article  Google Scholar 

  57. 57.

    Martinez, Y., Albiac, J.: Agricultural pollution control under Spanish and European environmental policies. Water Resour. Res. 40, W10501 (2004). doi:10.1029/2004WR003102

    Google Scholar 

  58. 58.

    McMahon, P.B., Burow, K.R., Kauffman, L.J., Eberts, S.M., Böhlke, J.K., Gurdak, J.J.: Simulated response of water quality in public supply wells to land use change. Water Resour. Res. 44, W00A06 (2008). doi:10.1029/2007WR006731

    Google Scholar 

  59. 59.

    Molenat, J., Gascuel-Odoux, C.: Modelling flow and nitrate transport in groundwater for the prediction of water travel times and of consequences of land use evolution on water quality. Hydrol. Process. 16, 479–492 (2002). doi:10.1002/hyp.328

    Article  Google Scholar 

  60. 60.

    Murgulet, D., Tick, G.R.: Assessing the extent and sources of nitrate contamination in the aquifer system of southern Baldwin County, Alabama. Environ. Geol. 58, 1051–1065 (2009). doi:10.1007/s00254-008-1585-5

    Article  Google Scholar 

  61. 61.

    Mustapha, H., Ghorayeb, A., Mustapha, K.: Complex flow simulation in natural aquifer: an algorithm for parallel flow simulations in the finite element framework. Adv. Eng. Inform. 27 (1), 149–156 (2009)

    Article  Google Scholar 

  62. 62.

    National Research Council: Groundwater vulnerability assessment: Predicting relative contamination potential under conditions of uncertainty, pp. 204. National Academy Press, Washington (1993)

    Google Scholar 

  63. 63.

    Neuman, S.P.: Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resour. Res. 26 (8), 1749–1758 (1990). doi:10.1029/WR026i008p01749

    Article  Google Scholar 

  64. 64.

    Nolan, B., Hitt, K.J.: Vulnerability of shallow groundwater and drinking-water wells to nitrate in the United States. Environ. Sci. Technol. 40 (24), 7834–7840 (2006)

    Article  Google Scholar 

  65. 65.

    Nolan, B., Ruddy, B. C., Hitt, K.J., Helsel, D.R.: Risk of Nitrate in groundwaters of the United States a national perspective. Environ. Sci. Technol. 31, 2229–2236 (1997)

    Article  Google Scholar 

  66. 66.

    Obi, E.-O., Blunt, M.J.: Streamline-based simulation of advective–dispersive solute transport. Adv. Water Resour. 27, 913–924 (2004)

    Article  Google Scholar 

  67. 67.

    Peterka, T., Ross, R.B., Nouanesengsy, B., Lee T-Y, Shen, H.-W., Kendall, W., Huang, J.: A study of parallel particle tracing for steady-state and time-varying flow fields. In proceeding of: 25th IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2011, Anchorage, Alaska, USA, 16-20 May (2011)

  68. 68.

    Phillips, S. P., Green, C. T., Burow, K. R., Shelton, J. L., Rewis, D. L.: Simulation of multiscale groundwater flow in part of the northeastern San Joaquin Valley, California: U.S. Geol. Surv. Sci. Investig. Rep. 2007–5009, 43 (2007)

    Google Scholar 

  69. 69.

    Refsgaarda, J.C., Thorsena, M., Jensena, J.B., Kleeschulteb, S., Hansen, S.: Large scale modelling of groundwater contamination from nitrate leaching. J. Hydrol. 221, 117–140 (1999). doi:10.1016/S0022-1694(99)00081-5

    Article  Google Scholar 

  70. 70.

    Saad, Y.: Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Google Scholar 

  71. 71.

    Snyder, D.T., Wilkinson, J.M., Orzol, L.L.: Use of a ground-water flow model with particle tracking to evaluate ground-water vulnerability, Clark County, Washington. U.S. Geological Survey. USGS Water-Supply Paper 2488, Denver (1998)

    Google Scholar 

  72. 72.

    Spalding, R.F., Exner, M.E.: Occurrence of nitrate in groundwater–a review. J. Environ. Qual. 22, 32–402 (1993)

    Article  Google Scholar 

  73. 73.

    Starn, J.J., Bagtzoglou, A.C., Robbins, G.A.: Methods for simulating solute breakthrough curves in pumping groundwater wells. Comput. & Geosci. 48, 244–255 (2012). 10.1016/j.cageo.2012.01.011

    Article  Google Scholar 

  74. 74.

    Starn, J.J., Bagtzoglou, A.C., Robbins, G.A.: Uncertainty in simulated groundwater quality trends in transient flow. Hydrogeol. J. 21 (4), 813–827 (2013)

    Article  Google Scholar 

  75. 75.

    Sutton, M.A., Howard, C.M., Erisman, J.W.: The European nitrogen assessment. 664 (2011)

  76. 76.

    Thorburn, P J, Biggs, J S, Weier, K L, Keating, B A: Nitrate in groundwaters of intensive agricultural areas in coastal Northeastern Australia. Agr Ecosyst Environ 94, 49–58 (2003)

    Article  Google Scholar 

  77. 77.

    Tuminaro, R., Tong, C. : Parallel smoothed aggregation multigrid: Aggregation strategies on massively parallel machines in Super Computing 2000 Proceeding Donnelley, J (ed.) (2000)

  78. 78.

    U.S. EPA.: Integrated Science Assessment for Oxides of Nitrogen—Health Criteria (Final Report). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-08/071. (2008)

  79. 79.

    Weissmann, G.S., Zhang, Y., LaBolle, E.M., Fogg, G.E.: Dispersion of groundwater age in an alluvial aquifer system. Water Resour. Res. 38 (10), 1198 (2002). doi:10.1029/2001WR000907

    Google Scholar 

  80. 80.

    Wriedt, G., Rode, M.: Modelling nitrate transport and turnover in a lowland catchment system. J. Hydrol. 328, 157–176 (2006)

    Article  Google Scholar 

  81. 81.

    Xiaoye, S.L.: An overview of SuperLU: Algorithms, implementation, and user interface. TOMS 31 (3), 302–325 (2005)

    Article  Google Scholar 

  82. 82.

    Yesilnacar, M.I., Sahinkaya, E.: Artificial neural network prediction of sulfate and SAR in an unconfined aquifer in southeastern Turkey. Environ. Earth Sci. 67, 1111–1119 (2012). doi:10.1007/s12665-012-1555-9

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to George Kourakos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kourakos, G., Harter, T. Parallel simulation of groundwater non-point source pollution using algebraic multigrid preconditioners. Comput Geosci 18, 851–867 (2014). https://doi.org/10.1007/s10596-014-9430-2

Download citation

Keywords

  • Non point source pollution
  • Algebraic multigrid
  • Diffuse pollution
  • Parallel computing
  • Contaminant transport
  • Streamline simulation