Computational Geosciences

, Volume 18, Issue 5, pp 625–636

Efficient multiphysics modelling with adaptive grid refinement using a MPFA method

  • Benjamin Faigle
  • Rainer Helmig
  • Ivar Aavatsmark
  • Bernd Flemisch
ORIGINAL PAPER

Abstract

A sequential solution procedure is used to simulate compositional two-phase flow in porous media. We employ a multiphysics concept that adapts the numerical complexity locally according to the underlying processes to increase efficiency. The framework is supplemented by a local refinement of the simulation grid. To calculate the fluxes on such grids, we employ a combination of the standard two-point flux approximation and a multipoint flux approximation where the grid is refined. This is then used to simulate a large-scale example related to underground CO2 storage.

Keywords

Adaptive mesh refinement Compressible two-phase flow Porous media Sequential algorithm 

Mathematics Subject Classifications (2010)

76S05 65M08 65M50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aavatsmark, I.: Multipoint flux approximation methods for quadrilateral grids. In: 9th International Forum on Reservoir Simulation, Abu Dhabi, December 2007.Google Scholar
  2. 2.
    Aavatsmark, I., Barkve, T., Bøe, Ø., Mannseth, T.: Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media. J. Comput. Phys. 127(1), 2–14 (1996)CrossRefGoogle Scholar
  3. 3.
    Aavatsmark, I., Eigestad, G.T., Heimsund, B.O., Mallison, B., Nordbotten, J.M., Øian, E.: A new finite-volume approach to efficient discretization on challenging grids. SPE J. 09, 658–669 (2010)CrossRefGoogle Scholar
  4. 4.
    Ács, G., Doleschall, S., Farkas, E.: General purpose compositional model. Soc. Pet. Eng. J., 543–553 (1985)Google Scholar
  5. 5.
    Albon, C., Jaffre/é, J., Roberts, J.E., Wang, X., Serres, C.: Domain decompositioning for some transition problems in flow in porous media. In: Chen, Z., Ewing, R.E., Shi, Z.-C. (eds.) Numerical Treatment of Multiphase Flow in Porous Media, Lecture Notes in Physics. Springer, Dordrecht (1999)Google Scholar
  6. 6.
    Bangerth, W., Hartmann, R., Kanschat, G.: Deal. II—a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33(4), 24 (2007)CrossRefGoogle Scholar
  7. 7.
    Bergmoa, P.ES., Grimstad, A.-A., Lindeberg, E., Riis, F., Johansen, W.E.: Exploring geological storage sites for CO2 from norwegian gas power plants: utsira south. In: Proceedings of the 9th International Conference on Greenhouse Gas Control Technologies (GHGT-9), vol. 1, pp. 2953–2959 (2009)Google Scholar
  8. 8.
    Chen, Z., Guan, Q., Ewing, R.E.: Analysis of a compositional model for fluid flow in porous media. SIAM J. Appl. Math. 60(3), 747–777 (2000)CrossRefGoogle Scholar
  9. 9.
    Class, H., Ebigbo, A., Helmig, R., Dahle, H.K., Nordbotten, J.M., Celia, M.A., Audigane, P., Darcis, M., Ennis-King, J., Fan, Y., Flemisch, B., Gasda, S.E., Jin, M., Krug, S., Labregere, D., Beni, A.N., Pawar, R.J., Sbai, A., Thomas, S.G., Trenty, L., Wei, L.: A benchmark study on problems related to CO 2 storage in geologic formations. Comput. Geosci. 13(4), 409–434 (2009)CrossRefGoogle Scholar
  10. 10.
    Class, H., Helmig, R., Niessner, J., Ölmann, U.: Multiphase processes in porous media. In: Helmig, R., Mielke, A., Wohlmuth, B. (eds.) Multifield Problems in Solid and Fluid Mechanics. Lecture Notes in Applied and Computational Mechanics, vol. 28, pp. 45–82. Springer, Berlin (2006)Google Scholar
  11. 11.
    Coats, K.H.: Impes stability: selection of stable timesteps. SPE J. 8(2), 181–187 (2003)CrossRefGoogle Scholar
  12. 12.
    Darcis, M.: Coupling Models of Different Complexity for the Simulation of CO Storage in Deep Saline Aquifers. PhD thesis, Universität Stuttgart (2012)Google Scholar
  13. 13.
    Edwards, M.G.: Elimination of adaptive grid interface errors in the discrete cell centered pressure equation. J Comput. Phys. 126(2), 356–372 (1996)CrossRefGoogle Scholar
  14. 14.
    Ewing, R.D., Lazarov, R.E.: Adaptive local grid refinement. In: SPE Rocky Mountain Regional Meeting, 11–13 May1988Google Scholar
  15. 15.
    Fritz, J., Flemisch, B., Helmig, R.: Decoupled and multiphysics models for non-isothermal compositional two-phase flow in porous media. Int. J. Numer. Anal. Model. 9(1), 17–28 (2012)Google Scholar
  16. 16.
    Fritz, J.: A Decoupled Model for Compositional Non-Isothermal Multiphase Flow in Porous Media and Multiphysics Approaches for Two-Phase Flow. PhD thesis, Universität Stuttgart (2010)Google Scholar
  17. 17.
    Green, C.P., Ennis-King, J.: Spatial grid correction for short-term numerical simulation results of carbon dioxide dissolution in saline aquifers. Comput. Geosci. 16, 1153–1161 (2012)CrossRefGoogle Scholar
  18. 18.
    Han, D.K., Han, D.L., Yan, C.Z., Peng, L.T.: A more flexible approach of dynamic local grid refinement for reservoir modeling. In: SPE Symposium on Reservoir Simulation, San Antonio, Texas, 1–4 February 1987Google Scholar
  19. 19.
    Heinemann, Z.E., Gerken, G., von Hantelmann, G.: Using local grid refinement in a multiple-application reservoir simulator. In: SPE Reservoir Simulation Symposium, San Francisco, 15–18 November 1983Google Scholar
  20. 20.
    Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  21. 21.
    Helmig, R., Niessner, J., Flemisch, B., Wolff, M., Fritz, J.: Efficient modelling of flow and transport in porous media using multi- physics and multi-scale approaches. Handb. Geomathematics 1, 417–457 (2010)CrossRefGoogle Scholar
  22. 22.
    Khattri, S.K., Aavatsmark, I.: Numerical convergence on adaptive grids for control volume methods. Numer. Methods Partial Differ. Equat. 24(2), 465–475 (2008)CrossRefGoogle Scholar
  23. 23.
    Michelsen, M.L., Mollerup, J.M.: Thermodynamic Models: Fundamentals & Computational Aspects, Holte (2007)Google Scholar
  24. 24.
    Pau, G.SH., Bell, J.B., Almgren, A.S., Fagnan, K.M., Lijewski, M.J.: An adaptive mesh refinement algorithm for compressible two-phase flow in porous media. Comput. Geosci. 16(3), 577–592 (2012)CrossRefGoogle Scholar
  25. 25.
    Peszynska, M., Lu, Q., Wheeler, M.F.: Multiphysics Coupling of CodesComputational Methods in Water Resources, pp 175–182. A. A. Balkema, Rotterdam (2000)Google Scholar
  26. 26.
    Sun, M., Takayama, K.: Error localization in solution-adaptive grid methods. J. Comput. Phys. 190(1), 346–350 (2003)CrossRefGoogle Scholar
  27. 27.
    Trangenstein, J.A., Bell, J.B.: Mathematical structure of compositional reservoir simulation. SIAM J. Sci. Stat. Comput. 817–845 (1989)Google Scholar
  28. 28.
    van Odyck, D.EA., Bell, J.B., Monmont, F., Nikiforakis, N.: The mathematical structure of multiphase thermal models of flow in porous media. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences of 2102, vol. 465, pp. 523–549 (2008)Google Scholar
  29. 29.
    Wheeler, J.A., Wheeler, M.F., Yotov, I.: Enhanced velocity mixed finite element methods for flow in multiblock domains. Comput. Geosci. 6, 315–332 (2002). doi:10.1023/A:1021270509932 CrossRefGoogle Scholar
  30. 30.
    Wheeler, M.F., Peszyńska, M.: Computational engineering and science methodologies for modeling and simulation of subsurface applications. Adv. Water Resour. 25, 1147–1173 (2002)CrossRefGoogle Scholar
  31. 31.
    Wolff, M., Cao, Y., Flemisch, B., Helmig, R., Wohlmuth, B.: Multi-point flux approximation L-method in 3D: numerical convergence and application to two-phase flow through porous media. In: Radon Series on Computational and Applied Mathematics 12. De gruyter, Berlin (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Benjamin Faigle
    • 1
  • Rainer Helmig
    • 1
  • Ivar Aavatsmark
    • 2
  • Bernd Flemisch
    • 1
  1. 1.IWS, Department of Hydromechanics and Modelling of HydrosystemsUniversität StuttgartStuttgartGermany
  2. 2.CIPRUniversity of BergenBergenNorway

Personalised recommendations