Skip to main content
Log in

A phase-by-phase upstream scheme that converges to the vanishing capillarity solution for countercurrent two-phase flow in two-rock media

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We discuss the convergence of the upstream phase-by-phase scheme (or upstream mobility scheme) towards the vanishing capillarity solution for immiscible incompressible two-phase flows in porous media made of several rock types. Troubles in the convergence were recently pointed out by Mishra and Jaffré (Comput. Geosci. 14, 105–124, 2010) and Tveit and Aavatsmark (Comput. Geosci. 16, 809–825, 2012). In this paper, we clarify the notion of vanishing capillarity solution, stressing the fact that the physically relevant notion of solution differs from the one inferred from the results of Kaasschieter (Comput. Geosci. 3, 23–48, 1999). In particular, we point out that the vanishing capillarity solution depends on the formally neglected capillary pressure curves, as it was recently proven in by Andreianov and Cancès (Comput. Geosci. 17, 551–572, 2013). Then, we propose a numerical procedure based on the hybridization of the interfaces that converges towards the vanishing capillarity solution. Numerical illustrations are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adimurthi, Jaffré, J., Veerappa Gowda, G.D.: Godunov-type methods for conservation laws with a flux function discontinuous in space. SIAM J. Numer. Anal. 42(1), 179–2008 (2004)

    Article  Google Scholar 

  2. Adimurthi, Mishra, S., Veerappa Gowda, G.D.: Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperbolic Differ. Equ. 2(4), 783–837 (2005)

    Article  Google Scholar 

  3. Amaziane, B., Milišić, J.P., Panfilov, M., Pankratov, L.: Generalized nonequilibrium capillary relations for two-phase flow through heterogeneous media. Phys. Rev. E 85(1), 016304 (2012)

    Article  Google Scholar 

  4. Andreianov, B., Brenner, K., Cancès, C.: Approximating the vanishing capillarity limit of two-phase flow in multi-dimensional heterogeneous porous medium. Z. Angew. Math. Mech. (2013). doi:10.1002/zamm.201200218

    Google Scholar 

  5. Andreianov, B., Cancès, C.: The Godunov scheme for scalar conservation laws with discontinuous bell-shaped flux functions. Appl. Math. Lett. 25, 1844–1848 (2012)

    Article  Google Scholar 

  6. Andreianov, B., Cancès, C.: Vanishing capillarity solutions of Buckley-Leverett equation with gravity in two-rocks’ medium. Comput. Geosci. 17(3), 551–572 (2013)

    Article  Google Scholar 

  7. Andreianov, B., Cancès, C.: On interface transmission conditions for conservation laws with discontinuous flux of general shape. In preparation (2014)

  8. Andreianov, B., Goatin, P., Seguin, N.: Finite volume schemes for locally constrained conservation laws. Numer. Math. 115(4), 609–645 (2010)

    Article  Google Scholar 

  9. Andreianov, B., Karlsen, K.H., Risebro, N.H.: A theory of L 1-dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. 201(1), 27–86 (2011)

    Article  Google Scholar 

  10. Audusse, E., Perthame, B.: Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies. Proc. R. Soc. Edinb. Sect. A 135(2), 253–265 (2005)

    Article  Google Scholar 

  11. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Elsevier, London (1979)

    Google Scholar 

  12. Baiti, P., Jenssen, H.K.: Well-posedness for a class of 2×2 conservation laws with L data. J. Differ. Equ. 140(1), 161–185 (1997)

    Article  Google Scholar 

  13. Bardos, C., le Roux, A.Y., Nédélec, J.-C.: First order quasilinear equations with boundary conditions. Commun. Partial Differ. Equ. 4(9), 1017–1034 (1979)

    Article  Google Scholar 

  14. Bertsch, M., Dal Passo, R., van Duijn, C.J.: Analysis of oil trapping in porous media flow. SIAM J. Math. Anal. 35(1), 245–267 (2003)

    Article  Google Scholar 

  15. Bourgeat, A., Hidani, A.: Effective model of two-phase flow in a porous media made of different rock types. Appl. Anal. 58, 1–29 (1995)

    Article  Google Scholar 

  16. Brenier, Y., Jaffré, J.: Upstream differencing for multiphase flow in reservoir simulation. SIAM J. Numer. Anal. 28(3), 685–696 (1991)

    Article  Google Scholar 

  17. Brenner, K., Cancès, C., Hilhorst, D.: Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure. Comput. Geosci. 17(3), 573–597 (2013)

    Article  Google Scholar 

  18. Bürger, R., García, A., Karlsen, K.H., Towers, J.D.: Difference schemes, entropy solutions, and speedup impulse for an inhomogeneous kinematic traffic flow model. Netw. Heterog. Media 3, 1–41 (2008)

    Article  Google Scholar 

  19. Bürger, R., Karlsen, K.H., Towers, J.D.: An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections. SIAM J. Numer. Anal. 47(3), 1684–1712 (2009)

    Article  Google Scholar 

  20. Buzzi, F., Lenzinger, M., Schweizer, B.: Interface conditions for degenerate two-phase flow equations in one space dimension. Analysis 29, 299–316 (2009)

    Article  Google Scholar 

  21. Cancès, C.: Finite volume scheme for two-phase flow in heterogeneous porous media involving capillary pressure discontinuities. M2AN Math. Model. Numer. Anal. 43(5), 973–1001 (2009)

    Article  Google Scholar 

  22. Cancès, C.: Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only on space. I. Convergence to the optimal entropy solution. SIAM J. Math. Anal. 42(2), 946–971 (2010)

    Article  Google Scholar 

  23. Cancès, C.: Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only on space. II. Non-classical shocks to model oil-trapping. SIAM J. Math. Anal. 42(2), 972–995 (2010)

    Article  Google Scholar 

  24. Cancès, C.: On the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types. Netw. Het. Media 5(3), 635–647 (2010)

    Article  Google Scholar 

  25. Cancès, C., Gallouët, T., Porretta, A.: Two-phase flows involving capillary barriers in heterogeneous porous media. Interfaces Free Boundary 11(2), 239–258 (2009)

    Article  Google Scholar 

  26. Cancès, C., Pierre, M.: An existence result for multidimensional immiscible two-phase flows with discontinuous capillary pressure field. SIAM J. Math. Anal. 44(2), 966–992 (2012)

    Article  Google Scholar 

  27. Chavent, G., Cohen, G., Jaffré, J.: A finite-element simulator for incompressible two-phase flow. Transport Porous Media 2, 465–478 (1987)

    Article  Google Scholar 

  28. Chavent, G., Jaffré, J.: Mathematical Models and Finite Elements for Reservoir Simulation, vol. 17. North-Holland, Amsterdam, Stud. Math. Appl. edition (1986)

  29. Colombo, R.M., Goatin, P.: A well posed conservation law with a variable unilateral constraint. J. Differ. Equ. 234(2), 654–675 (2007)

    Article  Google Scholar 

  30. Crandall, M., Majda, A.: Monotone difference approximations for scalar conservation laws. Math. Comput. 34, 1–21 (1980)

    Article  Google Scholar 

  31. Dalibard, A.-L.: Homogenization of non-linear scalar conservation laws. Arch. Ration. Mech. Anal. 192(1), 117–164 (2009)

    Article  Google Scholar 

  32. Diehl, S.: A uniqueness condition for nonlinear convection-diffusion equations with discontinuous coefficients. J. Hyperbolic Diff. Equ. 6(1), 127–159 (2009)

    Article  Google Scholar 

  33. van Duijn, C.J., Mikelić, A., Pop, I.S.: Effective equations for two-phase flow with trapping on the micro scale. SIAM J. Appl. Math. 62(5), 1531–1568 (2002)

    Article  Google Scholar 

  34. E, W.: Homogenization of linear and nonlinear transport equations. Commun. Pure Appl. Math 45(3), 301–326 (1992)

    Article  Google Scholar 

  35. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.-L. (eds.): Techniques of Scientific Computing, Part III, Handbook of Numerical Analysis, VII, pp 713–1020. North-Holland, Amsterdam (2000)

    Google Scholar 

  36. Eymard, R., Herbin, R., Michel, A.: Mathematical study of a petroleum-engineering scheme. M2AN Math. Model. Numer. Anal. 37(6), 937–972 (2003)

    Article  Google Scholar 

  37. Godlewski, E., Raviart, P.-A.: Hyperbolic Systems of Conservation Laws. Volume 3/4 of Mathématiques e & Applications (Paris) [Mathematics and Applications]. Ellipses, Paris (1991)

    Google Scholar 

  38. Henning, P., Ohlberger, M., Schweizer, B.: Homogenization of the degenerate two-phase flow equations. Math. Models Methods Appl. Sci. (2013). doi:10.1142/S02182025135003342013

    Google Scholar 

  39. Kaasschieter, E.F.: Solving the Buckley-Leverett equation with gravity in a heterogeneous porous medium. Comput. Geosci. 3(1), 23–48 (1999)

    Article  Google Scholar 

  40. Karlsen, K.H., Risebro, N.H., Towers, J.D.: L 1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Skr. K. Nor. Vidensk. Selsk. 3, 1–49 (2003)

    Google Scholar 

  41. Kruzhkov, S.N.: First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81(123), 228–255 (1970)

    Google Scholar 

  42. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)

    Article  Google Scholar 

  43. LeVeque, R.J.: Finite volume methods for hyperbolic problems. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  44. Mishra, S., Jaffré, J.: On the upstream mobility scheme for two-phase flow in porous media. Comput. Geosci. 14(1), 105–124 (2010)

    Article  Google Scholar 

  45. Mouche, E., Hayek, M., Mügler, C.: Upscaling of CO2 vertical migration through a periodic layered porous medium: the capillary-free and capillary-dominant cases. Adv. Water. Resour. 33, 1164–1175 (2010)

    Article  Google Scholar 

  46. Oleı̆nik, O.A.: Discontinuous solutions of non-linear differential equations. Am. Math. Soc. Transl. 26(2), 95–172 (1963)

    Google Scholar 

  47. Panov, E.Y.: Existence of strong traces for quasi-solutions of multidimensional conservation laws. J. Hyperbolic Differ. Equ. 4, 729–770 (2007)

    Article  Google Scholar 

  48. Sammon, P.H.: An analysis of upstream differencing. SPE Reserv. Eng. 3, 1053–1056 (1988)

    Article  Google Scholar 

  49. Schweizer, B.: Homogenization of degenerate two-phase flow equations with oil trapping. SIAM J. Math. Anal. 39, 1740–1763 (2008)

    Article  Google Scholar 

  50. Seguin, N., Vovelle, J.: Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients. Math. Models Methods Appl. Sci. 13(2), 221–257 (2003)

    Article  Google Scholar 

  51. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: a practical introduction. Springer, New York (2009)

    Book  Google Scholar 

  52. Towers, J.D.: Convergence of a difference scheme for conservation laws with a discontinuous flux. SIAM J. Numer. Anal. 38(2), 681–698 (electronic) (2000)

    Article  Google Scholar 

  53. Tveit, S., Aavatsmark, I.: Errors in the upstream mobility scheme for countercurrent two-phase flow in heterogeneous porous media. Comput. Geosci. 16(3), 809–825 (2012)

    Article  Google Scholar 

  54. Tveit, S., Mykkeltvedt, T., Aavatsmark, I.: On the performance of the upstream mobility scheme applied to counter-current two-phase flow in a heterogeneous porous medium. In: 2013 SPE Reservoir Simulation Symposium (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clément Cancès.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreianov, B., Cancès, C. A phase-by-phase upstream scheme that converges to the vanishing capillarity solution for countercurrent two-phase flow in two-rock media. Comput Geosci 18, 211–226 (2014). https://doi.org/10.1007/s10596-014-9403-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-014-9403-5

Keywords

Mathematics Subject Classifications (2010)

Navigation