Abstract
We discuss the convergence of the upstream phase-by-phase scheme (or upstream mobility scheme) towards the vanishing capillarity solution for immiscible incompressible two-phase flows in porous media made of several rock types. Troubles in the convergence were recently pointed out by Mishra and Jaffré (Comput. Geosci. 14, 105–124, 2010) and Tveit and Aavatsmark (Comput. Geosci. 16, 809–825, 2012). In this paper, we clarify the notion of vanishing capillarity solution, stressing the fact that the physically relevant notion of solution differs from the one inferred from the results of Kaasschieter (Comput. Geosci. 3, 23–48, 1999). In particular, we point out that the vanishing capillarity solution depends on the formally neglected capillary pressure curves, as it was recently proven in by Andreianov and Cancès (Comput. Geosci. 17, 551–572, 2013). Then, we propose a numerical procedure based on the hybridization of the interfaces that converges towards the vanishing capillarity solution. Numerical illustrations are provided.
This is a preview of subscription content, access via your institution.
References
Adimurthi, Jaffré, J., Veerappa Gowda, G.D.: Godunov-type methods for conservation laws with a flux function discontinuous in space. SIAM J. Numer. Anal. 42(1), 179–2008 (2004)
Adimurthi, Mishra, S., Veerappa Gowda, G.D.: Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperbolic Differ. Equ. 2(4), 783–837 (2005)
Amaziane, B., Milišić, J.P., Panfilov, M., Pankratov, L.: Generalized nonequilibrium capillary relations for two-phase flow through heterogeneous media. Phys. Rev. E 85(1), 016304 (2012)
Andreianov, B., Brenner, K., Cancès, C.: Approximating the vanishing capillarity limit of two-phase flow in multi-dimensional heterogeneous porous medium. Z. Angew. Math. Mech. (2013). doi:10.1002/zamm.201200218
Andreianov, B., Cancès, C.: The Godunov scheme for scalar conservation laws with discontinuous bell-shaped flux functions. Appl. Math. Lett. 25, 1844–1848 (2012)
Andreianov, B., Cancès, C.: Vanishing capillarity solutions of Buckley-Leverett equation with gravity in two-rocks’ medium. Comput. Geosci. 17(3), 551–572 (2013)
Andreianov, B., Cancès, C.: On interface transmission conditions for conservation laws with discontinuous flux of general shape. In preparation (2014)
Andreianov, B., Goatin, P., Seguin, N.: Finite volume schemes for locally constrained conservation laws. Numer. Math. 115(4), 609–645 (2010)
Andreianov, B., Karlsen, K.H., Risebro, N.H.: A theory of L 1-dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. 201(1), 27–86 (2011)
Audusse, E., Perthame, B.: Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies. Proc. R. Soc. Edinb. Sect. A 135(2), 253–265 (2005)
Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Elsevier, London (1979)
Baiti, P., Jenssen, H.K.: Well-posedness for a class of 2×2 conservation laws with L ∞ data. J. Differ. Equ. 140(1), 161–185 (1997)
Bardos, C., le Roux, A.Y., Nédélec, J.-C.: First order quasilinear equations with boundary conditions. Commun. Partial Differ. Equ. 4(9), 1017–1034 (1979)
Bertsch, M., Dal Passo, R., van Duijn, C.J.: Analysis of oil trapping in porous media flow. SIAM J. Math. Anal. 35(1), 245–267 (2003)
Bourgeat, A., Hidani, A.: Effective model of two-phase flow in a porous media made of different rock types. Appl. Anal. 58, 1–29 (1995)
Brenier, Y., Jaffré, J.: Upstream differencing for multiphase flow in reservoir simulation. SIAM J. Numer. Anal. 28(3), 685–696 (1991)
Brenner, K., Cancès, C., Hilhorst, D.: Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure. Comput. Geosci. 17(3), 573–597 (2013)
Bürger, R., García, A., Karlsen, K.H., Towers, J.D.: Difference schemes, entropy solutions, and speedup impulse for an inhomogeneous kinematic traffic flow model. Netw. Heterog. Media 3, 1–41 (2008)
Bürger, R., Karlsen, K.H., Towers, J.D.: An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections. SIAM J. Numer. Anal. 47(3), 1684–1712 (2009)
Buzzi, F., Lenzinger, M., Schweizer, B.: Interface conditions for degenerate two-phase flow equations in one space dimension. Analysis 29, 299–316 (2009)
Cancès, C.: Finite volume scheme for two-phase flow in heterogeneous porous media involving capillary pressure discontinuities. M2AN Math. Model. Numer. Anal. 43(5), 973–1001 (2009)
Cancès, C.: Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only on space. I. Convergence to the optimal entropy solution. SIAM J. Math. Anal. 42(2), 946–971 (2010)
Cancès, C.: Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only on space. II. Non-classical shocks to model oil-trapping. SIAM J. Math. Anal. 42(2), 972–995 (2010)
Cancès, C.: On the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types. Netw. Het. Media 5(3), 635–647 (2010)
Cancès, C., Gallouët, T., Porretta, A.: Two-phase flows involving capillary barriers in heterogeneous porous media. Interfaces Free Boundary 11(2), 239–258 (2009)
Cancès, C., Pierre, M.: An existence result for multidimensional immiscible two-phase flows with discontinuous capillary pressure field. SIAM J. Math. Anal. 44(2), 966–992 (2012)
Chavent, G., Cohen, G., Jaffré, J.: A finite-element simulator for incompressible two-phase flow. Transport Porous Media 2, 465–478 (1987)
Chavent, G., Jaffré, J.: Mathematical Models and Finite Elements for Reservoir Simulation, vol. 17. North-Holland, Amsterdam, Stud. Math. Appl. edition (1986)
Colombo, R.M., Goatin, P.: A well posed conservation law with a variable unilateral constraint. J. Differ. Equ. 234(2), 654–675 (2007)
Crandall, M., Majda, A.: Monotone difference approximations for scalar conservation laws. Math. Comput. 34, 1–21 (1980)
Dalibard, A.-L.: Homogenization of non-linear scalar conservation laws. Arch. Ration. Mech. Anal. 192(1), 117–164 (2009)
Diehl, S.: A uniqueness condition for nonlinear convection-diffusion equations with discontinuous coefficients. J. Hyperbolic Diff. Equ. 6(1), 127–159 (2009)
van Duijn, C.J., Mikelić, A., Pop, I.S.: Effective equations for two-phase flow with trapping on the micro scale. SIAM J. Appl. Math. 62(5), 1531–1568 (2002)
E, W.: Homogenization of linear and nonlinear transport equations. Commun. Pure Appl. Math 45(3), 301–326 (1992)
Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.-L. (eds.): Techniques of Scientific Computing, Part III, Handbook of Numerical Analysis, VII, pp 713–1020. North-Holland, Amsterdam (2000)
Eymard, R., Herbin, R., Michel, A.: Mathematical study of a petroleum-engineering scheme. M2AN Math. Model. Numer. Anal. 37(6), 937–972 (2003)
Godlewski, E., Raviart, P.-A.: Hyperbolic Systems of Conservation Laws. Volume 3/4 of Mathématiques e & Applications (Paris) [Mathematics and Applications]. Ellipses, Paris (1991)
Henning, P., Ohlberger, M., Schweizer, B.: Homogenization of the degenerate two-phase flow equations. Math. Models Methods Appl. Sci. (2013). doi:10.1142/S02182025135003342013
Kaasschieter, E.F.: Solving the Buckley-Leverett equation with gravity in a heterogeneous porous medium. Comput. Geosci. 3(1), 23–48 (1999)
Karlsen, K.H., Risebro, N.H., Towers, J.D.: L 1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Skr. K. Nor. Vidensk. Selsk. 3, 1–49 (2003)
Kruzhkov, S.N.: First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81(123), 228–255 (1970)
van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)
LeVeque, R.J.: Finite volume methods for hyperbolic problems. Cambridge University Press, Cambridge (2002)
Mishra, S., Jaffré, J.: On the upstream mobility scheme for two-phase flow in porous media. Comput. Geosci. 14(1), 105–124 (2010)
Mouche, E., Hayek, M., Mügler, C.: Upscaling of CO2 vertical migration through a periodic layered porous medium: the capillary-free and capillary-dominant cases. Adv. Water. Resour. 33, 1164–1175 (2010)
Oleı̆nik, O.A.: Discontinuous solutions of non-linear differential equations. Am. Math. Soc. Transl. 26(2), 95–172 (1963)
Panov, E.Y.: Existence of strong traces for quasi-solutions of multidimensional conservation laws. J. Hyperbolic Differ. Equ. 4, 729–770 (2007)
Sammon, P.H.: An analysis of upstream differencing. SPE Reserv. Eng. 3, 1053–1056 (1988)
Schweizer, B.: Homogenization of degenerate two-phase flow equations with oil trapping. SIAM J. Math. Anal. 39, 1740–1763 (2008)
Seguin, N., Vovelle, J.: Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients. Math. Models Methods Appl. Sci. 13(2), 221–257 (2003)
Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: a practical introduction. Springer, New York (2009)
Towers, J.D.: Convergence of a difference scheme for conservation laws with a discontinuous flux. SIAM J. Numer. Anal. 38(2), 681–698 (electronic) (2000)
Tveit, S., Aavatsmark, I.: Errors in the upstream mobility scheme for countercurrent two-phase flow in heterogeneous porous media. Comput. Geosci. 16(3), 809–825 (2012)
Tveit, S., Mykkeltvedt, T., Aavatsmark, I.: On the performance of the upstream mobility scheme applied to counter-current two-phase flow in a heterogeneous porous medium. In: 2013 SPE Reservoir Simulation Symposium (2013)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Andreianov, B., Cancès, C. A phase-by-phase upstream scheme that converges to the vanishing capillarity solution for countercurrent two-phase flow in two-rock media. Comput Geosci 18, 211–226 (2014). https://doi.org/10.1007/s10596-014-9403-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10596-014-9403-5
Keywords
- Porous media two-phase flows
- Discontinuous capillarity
- Scalar conservation laws with discontinuous flux functions
- Vanishing capillarity solution
- Finite volume scheme
- Upstream differencing
- Convergence
Mathematics Subject Classifications (2010)
- 35L02
- 35L65
- 65M08
- 76S05