Skip to main content
Log in

Fast linear solver for diffusion problems with applications to pressure computation in layered domains

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Accurate simulation of fluid pressures in layered reservoirs with strong permeability contrasts is a challenging problem. For this purpose, the Discontinuous Galerkin (DG) method has become increasingly popular. Unfortunately, standard linear solvers are usually too inefficient for the aforementioned application. To increase the efficiency of the conjugate gradient (CG) method for linear systems resulting from symmetric interior penalty (discontinuous) Galerkin (SIPG) discretizations, we cast an existing two-level preconditioner into the deflation framework. The main idea is to use coarse corrections based on the DG solution with polynomial degree p = 0. This paper provides a numerical comparison of the performance of the original preconditioner and the resulting deflation variant in terms of scalability and overall efficiency. Furthermore, it studies the influence of the SIPG penalty parameter, weighted averages in the SIPG formulation (SWIP), the smoother, damping of the smoother, and the strategy for solving the coarse systems. We have found that the penalty parameter can best be chosen diffusion-dependent. In that case, both two-level methods yield fast and scalable convergence. Whether preconditioning or deflation is to be favored depends on the choice of the smoother and on the damping of the smoother. Altogether, both two-level methods can contribute to cheaper and more accurate fluid pressure simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonietti, P.F., Ayuso, B.: Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: non-overlapping case. M2AN Math. Model. Numer. Anal. 41(1), 21–54 (2007)

    Article  Google Scholar 

  2. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (electronic) (2002)

    Article  Google Scholar 

  3. Axelsson, O., Vassilevski, P.S.: Variable-step multilevel preconditioning methods. I. Selfadjoint and positive definite elliptic problems. Numer. Linear Algebra Appl. 1(1), 75–101 (1994)

    Article  Google Scholar 

  4. Ayuso de Dios, B., Holst, M., Zhu, Y., Zikatanov, L.: Multilevel preconditioners for discontinuous Galerkin approximations of elliptic problems with jump coeffients. arXiv:1012.1287v2 (2012)

  5. Brenner, S.C., Zhao, J.: Convergence of multigrid algorithms for interior penalty methods. Appl. Numer. Anal. Comput. Math. 2(1), 3–18 (2005)

    Article  Google Scholar 

  6. Burman, E., Zunino, P.: A domain decomposition method based on weighted interior penalties for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 44(4), 1612–1638 (electronic) (2006)

    Article  Google Scholar 

  7. Castillo, P.: Performance of discontinuous Galerkin methods for elliptic PDEs. SIAM J. Sci. Comput. 24(2), 524–547 (2002)

    Article  Google Scholar 

  8. Dobrev, V.A., Lazarov, R.D., Vassilevski, P.S., Zikatanov, L.T.: Two-level preconditioning of discontinuous Galerkin approximations of second-order elliptic equations. Numer. Linear Algebra Appl. 13(9), 753–770 (2006)

    Article  Google Scholar 

  9. Dobrev, V.A., Lazarov, R.D., Zikatanov, L.T.: Preconditioning of symmetric interior penalty discontinuous Galerkin FEM for elliptic problems. In: Domain Decomposition Methods in Science and Engineering XVII, Lecture Notes in Computer Science and Engineering, vol. 60, pp. 33–44. Springer, Berlin (2008)

  10. Dryja, M.: On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients. Comput. Methods Appl. Math. 3(1), 76–85 (electronic) (2003). Dedicated to Raytcho Lazarov

    Article  Google Scholar 

  11. Epshteyn, Y., Rivière, B.: Estimation of penalty parameters for symmetric interior penalty Galerkin methods. J. Comput. Appl. Math. 206(2), 843–872 (2007)

    Article  Google Scholar 

  12. Ern, A., Stephansen, A., Zunino, P.: A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer. Anal. 29(2), 235–256 (2009). doi:10.1093/imanum/drm050

    Article  Google Scholar 

  13. Falgout, R.D., Vassilevski, P.S., Zikatanov, L.T.: On two-grid convergence estimates. Numer. Linear Algebra Appl. 12(5–6), 471–494 (2005)

    Article  Google Scholar 

  14. Feng, X., Karakashian, O.A.: Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 39(4), 1343–1365 (electronic) (2001)

    Article  Google Scholar 

  15. Fidkowski, K.J., Oliver, T.A., Lu, J., Darmofal, D.L.: p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. J. Comput. Phys. 207(1), 92–113 (2005). doi:10.1016/j.jcp.2005.01.005

    Article  Google Scholar 

  16. Gopalakrishnan, J., Kanschat, G.: A multilevel discontinuous Galerkin method. Numer. Math. 95(3), 527–550 (2003)

    Article  Google Scholar 

  17. Kuznetsov, Y.: Matrix computational processes in subspaces. In: Glowinski, R., Lions, J. (eds) Computing Methods in Applied Sciences and Engineering, vol. VI, pp. 15–31. North-Holland. (1984). Proceedings of the 6th International Symposium on Computing Methods in Applied Sciences and Engineering, Versailles, France, December 12–16, (1983)

  18. Lacroix, S., Vassilevski, Y., Wheeler, J., Wheeler, M.: Iterative solution methods for modeling multiphase flow in porous media fully implicitly. SIAM J. Sci. Comput. 25(3), 905–926 (2003)

    Article  Google Scholar 

  19. Mandel, J.: Balancing domain decomposition. Commun. Numer. Methods Eng. 9, 233–241 (1993)

    Article  Google Scholar 

  20. Mandel, J., Brezina, M.: Balancing domain decomposition for problems with large jumps in coefficients. Math. Comput. 65(216), 1387–1401 (1996)

    Article  Google Scholar 

  21. Nicolaides, R.A.: Deflation of conjugate gradients with applications to boundary value problems. SIAM J. Numer. Anal. 24(2), 355–365 (1987)

    Article  Google Scholar 

  22. Notay, Y.: Flexible conjugate gradients. SIAM J. Sci. Comput. 22(4), 1444–1460 (electronic) (2000)

    Article  Google Scholar 

  23. Persson, P.O., Peraire, J.: Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier-Stokes equations. SIAM J. Sci. Comput. 30(6), 2709–2733 (2008)

    Article  Google Scholar 

  24. Prill, F., Lukáčová-Medviďová, M., Hartmann, R.: Smoothed aggregation multigrid for the discontinuous Galerkin method. SIAM J. Sci. Comput. 31(5), 3503–3528 (2009)

    Article  Google Scholar 

  25. Proft, J., Rivière, B.: Discontinuous Galerkin methods for convection-diffusion equations for varying and vanishing diffusivity. Int. J. Numer. Anal. Model. 6(4), 533–561 (2009)

    Google Scholar 

  26. Rivière, B.: Discontinuous Galerkin methods for solving elliptic and parabolic equations. In: Frontiers in Applied Mathematics, vol. 35. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008). Theory and implementation

  27. Rivière, B., Wheeler, M., Banas̀, K.: Part ii. discontinuous galerkin method applied to a single-phase flow in porous media. Comput. Geosci. 4, 337–349 (2000)

    Article  Google Scholar 

  28. Saad, Y., Suchomel, B.: ARMS: an algebraic recursive multilevel solver for general sparse linear systems. Numer. Linear Algebra Appl. 9(5), 359–378 (2002). doi:10.1002/nla.279

    Article  Google Scholar 

  29. Sherwin, S.J., Kirby, R.M., Peiró, J., Taylor, R.L., Zienkiewicz, O.C.: On 2D elliptic discontinuous Galerkin methods. Int. J. Numer. Methods Eng. 65(5), 752–784 (2006)

    Article  Google Scholar 

  30. van Slingerland, P., Vuik, C.: Scalable two-level preconditioning and deflation base on a piecewise constant subspace for (SIP)DG systems. Tech. Rep. 12–11, Delft University of Technology (2012)

  31. Stüben, K.: An introduction to algebraic multigrid. In: Trottenberg, U., Oosterlee, C.W., Schüller, A. (eds.) Multigrid, pp. 413–532. Academic Press, New York (2001)

  32. Sun, S., Wheeler, M.: Local problem-based a posteriori error estimators for discontinuous galerkin approximations of reactive transport. Comput. Geosci. 11(2), 87–101 (2007)

    Article  Google Scholar 

  33. Tang, J.M., MacLachlan, S.P., Nabben, R., Vuik, C.: A comparison of two-level preconditioners based on multigrid and deflation. SIAM J. Matrix Anal. Appl. 31(4), 1715–1739 (2010)

    Article  Google Scholar 

  34. Tang, J.M., Nabben, R., Vuik, C., Erlangga, Y.A.: Comparison of two-level preconditioners derived from deflation, domain decomposition, and multigrid methods. J. Sci. Comput. 39(3), 340–370 (2009)

    Article  Google Scholar 

  35. Vassilevski, P.S.: Multilevel block factorization preconditioners. Matrix-based analysis and algorithms for solving finite element equations. Springer, New York (2008)

    Google Scholar 

  36. Vassilevski, Y.: A hybrid domain decomposition method based on aggregation. Numer Linear Algebra Appl. 11(4), 327–341 (2004)

    Article  Google Scholar 

  37. Vuik, C., Segal, A., Meijerink, J.: An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts in the coefficients. J. Comput. Phys. 152, 385–403 (1999)

    Article  Google Scholar 

  38. Vuik, C., Segal, A., Meijerink, J., Wijma, G.: The construction of projection vectors for a Deflated ICCG method applied to problems with extreme contrasts in the coefficients. J. Comput. Phys. 172, 426–450 (2001)

    Article  Google Scholar 

  39. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev 34(4), 581–613 (1992)

    Article  Google Scholar 

  40. Yavneh, I.: Why multigrid methods are so efficient. Comput. Sci. Eng. 8(6), 12–22 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. van Slingerland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Slingerland, P., Vuik, C. Fast linear solver for diffusion problems with applications to pressure computation in layered domains. Comput Geosci 18, 343–356 (2014). https://doi.org/10.1007/s10596-014-9400-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-014-9400-8

Keywords

Mathematics Subject Classifications (2010)

Navigation