Skip to main content
Log in

Modeling fluid injection in fractures with a reservoir simulator coupled to a boundary element method

  • Published:
Computational Geosciences Aims and scope Submit manuscript


We describe an algorithm for modeling saturated fractures in a poroelastic domain in which the reservoir simulator is coupled with a boundary element method. A fixed stress splitting is used on the underlying fractured Biot system to iteratively couple fluid and solid mechanics systems. The fluid system consists of Darcy’s law in the reservoir and is computed with a multipoint flux mixed finite element method, and a Reynolds’ lubrication equation in the fracture solved with a mimetic finite difference method. The mechanics system consists of linear elasticity in the reservoir and is computed with a continuous Galerkin method, and linear elasticity in the fracture is solved with a weakly singular symmetric Galerkin boundary element method. This algorithm is able to compute both unknown fracture width and unknown fluid leakage rate. An interesting numerical example is presented with an injection well inside of a circular fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Adachi, J., Siebrits, E., Peirce, A., Desroches, J.: Computer simulation of hydraulic fractures. Int. J. Rock Mech. Min. Sci. 44(5), 739–757 (2007)

    Article  Google Scholar 

  2. Al-Hinai, O., Singh, G., Almani, T., Pencheva, G., Wheeler, M.F.: Modeling multiphase flow with nonplanar fractures. In: 2013 SPE Reservoir Simulation Symposium. Texas, The Woodlands. SPE-163605 (2013)

  3. Bishop, J., Martinez, M., Newell, P.: A finite-element method for modeling fluid-Pressure induced discrete-fracture propagation using random meshes. In: American Rock Mechanics Association, Chicago. ARMA 12–190 (2012)

  4. Bourdin, B., Chukwudozie, C., Yoshioka, K.: A variational approach to the numerical simulation of hydraulic fracturing. SPE PP 146951 (2012)

  5. Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed elements for second order elliptic problems. Numer. Math. 88, 217–235 (1985)

    Article  Google Scholar 

  6. Brezzi, F., Lipnikov, K., Simoncini, V.: A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15(10), 1533–1551 (2005)

    Article  Google Scholar 

  7. Carrier, B., Granet, S.: Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model. Eng. Fract. Mech. 79, 312–328 (2012)

    Article  Google Scholar 

  8. Carter, R.D.: Derivation of the General Equation for Estimating the Extent of the Fractured AreaDrilling and Production Practice. API, New York (1957)

    Google Scholar 

  9. Ciarlet, P.G.: The Finite Element Method For Elliptic Problems. North-Holland, Amsterdam (1987)

    Google Scholar 

  10. Program Development Company. GridPro mesh generation software. (2013) Accessed 12 July 2013

  11. Dean, R., Schmidt, J.: Hydraulic-fracture predictions with a fully coupled geomechanical reservoir simulator. SPE J. 14(4), 707–714 (2009)

    Article  Google Scholar 

  12. Ganis, B., Girault, V., Mear, M.E., Singh, G., Wheeler, M.F.: Modeling fractures in a poro-elastic medium. In: Technical Report ICES Report 13-09. The University of Texas, Austin (2013)

  13. Ingram, R., Wheeler, M.F., Yotov, I.: A multipoint flux mixed finite element method on hexahedra. SIAM J. Numer. Anal. 48(4), 1281–1312 (2010)

    Article  Google Scholar 

  14. Irzal, F., Remmers, J., Huyghe, J.M., de Borst, R.: A large deformation formulation for fluid flow in a progressively fracturing porous material. Comput. Methods Appl. Mech. Eng. 256, 29–37 (2013)

    Article  Google Scholar 

  15. Jaffré, J., Mnejja, M., Roberts, J.E.: A discrete fracture model for two-phase flow with matrix-fracture interaction. Procedia Comput. Sci. 4, 967–973 (2011)

    Article  Google Scholar 

  16. Ji, L., Settari, A., Sullivan, R.: A novel hydraulic fracturing model fully coupled with geomechanics and reservoir simulation. SPE J. 14(3), 423–430 (2009)

    Article  Google Scholar 

  17. Johns, R., Sepehrnoori, K., Varavei, A., Moinfar, A.: Development of a coupled dual continuum and discrete fracture model for the simulation of unconventional reservoirs. In: 2013 SPE Reservoir Simulation Symposium (2013)

  18. Keat, W.D., Annigeri, B.S., Cleary, M.P.: Surface integral and finite element hybrid method for two-and three-dimensional fracture mechanics analysis. Int. J. Fract. 36(1), 35–53 (1988)

    Google Scholar 

  19. Lacroix, S., Vassilevski, Y.V., Wheeler, M.F.: Iterative solvers of the implicit parallel accurate reservoir simulator (IPARS). I: Single processor case. In: Technical Report 00-28, TICAM. University of Texas, Austin (2000)

  20. Latham, J.-P., Xiang, J., Belayneh, M., Nick, H.M., Tsang, C.-F., Blunt, M.J.: Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures. Int. J. Rock Mech. Min. Sci. 57, 100–112 (2012)

    Google Scholar 

  21. Lecampion, B., Detournay, E.: An implicit algorithm for the propagation of a hydraulic fracture with a fluid lag. Comput. Methods Appl. Mech. Engrg. 196, 4863–4880 (2007)

    Article  Google Scholar 

  22. Li, S., Mear, M.E.: Singularity-reduced integral equations for displacement discontinuities in three-dimensional linear elastic media. Int. J. Fract. 93(1–4), 87–114 (1998)

    Article  Google Scholar 

  23. Li, S., Mear, M.E., Xiao, L.: Symmetric weak-form integral equation method for three-dimensional fracture analysis. Comput. Methods Appl. Mech. Eng. 151(3), 435–459 (1998)

    Article  Google Scholar 

  24. Mikelić, A., Wheeler, M.F.: Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 1–7 (2012)

  25. Nikishkov, G.P., Park, J.H., Atluri, S.N.: SGBEM-FEM alternating method for analyzing 3D non-planar cracks and their growth in structural components. Comput. Model. Eng. Sci. 2(3), 401–422 (2001)

    Google Scholar 

  26. Olson, J.E.: Multi-fracture propagation modeling: applications to hydraulic fracturing in shales and tight gas sands. In: The 42nd US Rock Mechanics Symposium (USRMS) (2008)

  27. Rungamornrat, J., Mear, M.E.: SGBEM-FEM coupling for analysis of cracks in 3D anisotropic media. Int. J. Numer. Methods Eng. 86(2), 224–248 (2011)

    Article  Google Scholar 

  28. Rungamornrat, J., Wheeler, M.F., Mear, M.E.: A numerical technique for simulating nonplanar evolution of hydraulic fractures. SPE 96968, 2005 (2005)

    Google Scholar 

  29. Schrefler, B.A., Secchi, S., Simoni, L.: On adaptive refinement techniques in multi-field problems including cohesive fracture. Comput. Methods Appl. Engrg. 195, 444–461 (2006)

    Article  Google Scholar 

  30. Vassilevski, Y.V.: Iterative Solvers for the Implicit Parallel Accurate Reservoir Simulator (IPARS). II: parallelization issues. In: Technical Report 00-33, TICAM. University of Texas, Austin (2000)

  31. Wheeler, M.F., Xue, G., Yotov, I.: Accurate cell-centered discretizations for modeling multiphase flow in porous media on general hexahedral and simplicial grids. In: SPE Reservoir Simulation Symposium. The Woodlands, Texas. SPE 141534 (2011)

  32. Youngquist, W., Duncan, R.C.: North american natural gas: data show supply problems. Nat. Resour. Res 12(4), 229–240 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Benjamin Ganis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganis, B., Mear, M.E., Sakhaee-Pour, A. et al. Modeling fluid injection in fractures with a reservoir simulator coupled to a boundary element method. Comput Geosci 18, 613–624 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: