Skip to main content

Coupling multipoint flux mixed finite element methodswith continuous Galerkin methods for poroelasticity

Abstract

We study the numerical approximation on irregular domains with general grids of the system of poroelasticity, which describes fluid flow in deformable porous media. The flow equation is discretized by a multipoint flux mixed finite element method and the displacements are approximated by a continuous Galerkin finite element method. First-order convergence in space and time is established in appropriate norms for the pressure, velocity, and displacement. Numerical results are presented that illustrate the behavior of the method.

This is a preview of subscription content, access via your institution.

References

  1. Aavastsmark, I., Eigestad, G.T., Klausen, R.A., Wheeler, M.F., Yotov, I.: Convergence of a symmetric MPFA method on quadrilateral grids. Comput. Geosci. 11, 333–345 (2007)

    Article  Google Scholar 

  2. Aavatsmark, I.: An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6, 405–432 (2002)

    Article  Google Scholar 

  3. Aavatsmark, I., Barkve, T., Boe, O., Mannseth, T.: Discretization on unstructured grids for inhomogeneous, anisotropic media, part II: discussion and numerical results. SIAM J. Sci. Comput. 19, 1717–1736 (1998)

    Article  Google Scholar 

  4. Arnold, D.N., Boffi, D., Falk, R.S.: Approximation by quadrilateral finite elements. Math. Comp. 71, 909–922 (2002)

    Article  Google Scholar 

  5. Arnold, D.N., Boffi, D., Falk, R.S.: Quadrilateral \(H({\mathrm div})\) finite elements. SIAM J. Numer. Anal. 42, 2429–2451 (2005). (electronic)

    Article  Google Scholar 

  6. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  Google Scholar 

  7. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics. Springer-Verlag (2007)

  8. Brezzi, F., Douglas, J., Duran, R., Fortin, M.: Mixed finite elements for second order elliptic problems in three variables. Numer. Math. 51, 237–250 (1987)

    Article  Google Scholar 

  9. Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)

    Article  Google Scholar 

  10. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Spring-Verlag, New York (1991)

    Book  Google Scholar 

  11. Chin, L.Y., Raghavan, R., Thomas, L.: Iterative coupled analysis of geomechanics and fluid flow for rock compaction in reservoir simulation. Oil Gas Sci. Tech. 57, 485–497 (2002)

    Article  Google Scholar 

  12. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies of Mathematics Applied, vol. 4. North-Holland, Amsterdam, 1978; reprinted, SIAM, Philadelphia (2002)

  13. Edwards, M.G.: Unstructured control-volume distributed, full-tensor finite-volume schemes with flow based grids. Comput. Geosci. 6, 433–452 (2002)

    Article  Google Scholar 

  14. Edwards, M.G., Rogers, C.F.: Finite volume discretization with imposed flux continuity for the general tensor pressure equation. Comput. Geosci. 2, 259–290 (1998)

    Article  Google Scholar 

  15. Ewing, R.E., Iliev, O.P., Lazarov, R.D., Naumovich, A.: On convergence of certain finite volume difference discretizations for 1D poroelasticity interface problems. Numer. Methods Partial Differ. Equ. 23, 652–671 (2007)

    Article  Google Scholar 

  16. Falk, R.S., Gatto, P., Monk, P.: Hexahedral H(div) and H(curl) finite elements. Math. Mod. Numer. Anal. 45(1), 115–143 (2010)

    Article  Google Scholar 

  17. Gai, X.: A Coupled Geomechanics and Reservoir Flow Model on Parallel Computers. PhD thesis, University of Texas at Austin, Texas (2004)

  18. Gai, X., Dean, R., Wheeler, M.F., Liu, R.: Coupled geomechanical and reservoir modeling on parallel computers. In: Proceedings of SPE Reservoir Symposium. SPE, Houston. SPE 79700 (2003)

  19. Gaspar, F.J., Lisbona, F.J., Vabishchevich, P.N.: A finite difference analysis of Biot’s consolidation model. Appl. Numer. Math. 44, 487–506 (2003)

    Article  Google Scholar 

  20. Girault, V., Pencheva, G., Wheeler, M.F., Wildey, T.M.: Domain decomposition for poroelasticity and elasticity with DG jumps and mortars. Math. Model. Meth. Appl. Sci. 21, 169–213 (2011)

    Article  Google Scholar 

  21. Ingram, R., Wheeler, M.F., Yotov, I.: A multipoint flux mixed finite element method on hexahedra. SIAM J. Numer. Anal. 48, 1281–1312 (2010)

    Article  Google Scholar 

  22. Klausen, R.A., Radu, F.A., Eigestad, G.T.: Convergence of MPFA on triangulations and for Richards’ equation. Int. J. Numer. Meth. Fluids 58, 1327–1351 (2008)

    Article  Google Scholar 

  23. Klausen, R.A., Winther, R.: Convergence of multipoint flux approximations on quadrilateral grids. Numer. Methods Partial Differ. Equ. 22, 1438–1454 (2006)

    Article  Google Scholar 

  24. Klausen, R.A., Winther, R.: Robust convergence of multi point flux approximation on rough grids. Numer. Math. 104, 317–337 (2006)

    Article  Google Scholar 

  25. Korsawe, J., Starke, G.: A least-squares mixed finite element method for Biot’s consolidation problem in porous media. SIAM J. Numer. Anal. 43, 318–339 (2005). (electronic)

    Article  Google Scholar 

  26. Korsawe, J., Starke, G., Wang, W., Kolditz, O.: Finite element analysis of poro-elastic consolidation in porous media: Standard and mixed approaches. Comput. Methods Appl. Mech. Eng. 195, 1096–1115 (2006)

    Article  Google Scholar 

  27. Liu, R.: Discontinuous Galerkin Finite Element Solution for Poromechanics. PhD thesis, The University of Texas at Austin (2004)

  28. Liu, R., Wheeler, M.F., Dawson, C., Dean, R.: On a coupled discontinuous/continuous Galerkin framework and an adaptive penalty scheme for poroelasticity problems. Comput. Meth. Appl. Mech. Eng. 198, 3499–3510 (2009)

    Article  Google Scholar 

  29. Matthies, G.: Mapped finite elements on hexahedra. necessary and sufficient conditions for optimal interpolation errors. Numer. Algorithm. 27, 317–327 (2001)

    Article  Google Scholar 

  30. Murad, M.A., Loula, A.FD.: Improved accuracy in finite element analysis of Biot’s consolidation problem. Comput. Methods Appl. Mech. Engrg. 95, 359–382 (1992)

    Article  Google Scholar 

  31. Murad, M.A., Loula, A.FD.: On stability and convergence of finite element approximations of Biot’s consolidation problem. Int. J. Numer. Methods Eng. 37, 645–667 (1994)

    Article  Google Scholar 

  32. Murad, M.A., Thomée, V., Loula, A.FD.: Asymptotic behavior of semidiscrete finite-element approximations of Biot’s consolidation problem. SIAM J. Numer. Anal. 33, 1065–1083 (1996)

    Article  Google Scholar 

  33. Naff, R., Russell, T., Wilson, J.D.: Shape functions for velocity interpolation in general hexahedral cells. Comp. Geosci. 6, 285–314 (2002)

    Article  Google Scholar 

  34. Nedelec, J.C.: Mixed finite elements in \(r^{3}\). Numer. Math. 35, 315–341 (1980)

    Article  Google Scholar 

  35. Phillips, P.J.: Finite Element Methods in Linear Poroelasticity: Theoretical and Computational Results. PhD thesis, University of Texas at Austin (2005)

  36. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case. Comput. Geosci. 11, 131–144 (2007)

    Article  Google Scholar 

  37. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: the discrete in time case. Comput. Geosci. 11, 145–158 (2007)

    Article  Google Scholar 

  38. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity. Comput. Geosci. 12, 417–435 (2008)

    Article  Google Scholar 

  39. Raviart, P.A., Thomas, J.: A mixed finite element method for 2nd order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of the Finite Elements Method, Lectures Notes in Math, vol. 606, pp 292–315. Springer, Berlin (1977)

    Chapter  Google Scholar 

  40. Sboui, A., Jaffre, J., Roberts, J.: A composite mixed finite elements for hexahedral grids. SIAM J. Sci. Comput. 31, 2623–2645 (2009)

    Article  Google Scholar 

  41. Settari, A., Mourits, F.: Coupling of geomechanics and reservoir simulation models. In: Siriwardane, Zaman (eds.) Computer Methods and Advances in Geomechanics, pp. 2151–2158. Balkema Rotterdam (1994)

  42. Showalter, R.: Diffusion in poro-elastic media. J. Math. Anal. Appl. 251, 310–340 (2000)

    Article  Google Scholar 

  43. Wang, J., Mathew, T.P.: Mixed finite element method over quadrilaterals. In: Dimov, I.T., Sendov, B., Vassilevski, P. (eds.) Conference on Advances in Numerical Methods and Applications, pp 203–214. World Scientific, River Edge (1994)

    Google Scholar 

  44. Wheeler, M.F., Yotov, I.: A multipoint flux mixed finite element method. SIAM J. Numer. Anal. 44, 2082–2106 (2006)

    Article  Google Scholar 

  45. Wheeler, M., Xue, G., Yotov, I.: Benchmark 3D: A multipoint flux mixed finite element method on general hexahedra. In: Finite Volumes for Complex Applications VI Problems & Perspectives. Springer Proceedings in Mathematics, vol. 4, pp. 1055–1065 (2011)

  46. Wheeler, M., Xue, G., Yotov, I.: Accurate cell-centered discretizations for modeling multiphase flow in porous media on general hexahedral and simplicial grids. SPE J. 7, 779–793 (2012)

    Google Scholar 

  47. Wheeler, M., Xue, G., Yotov, I.: A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra. Numer. Math. 121, 165–204 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangri Xue.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wheeler, M., Xue, G. & Yotov, I. Coupling multipoint flux mixed finite element methodswith continuous Galerkin methods for poroelasticity. Comput Geosci 18, 57–75 (2014). https://doi.org/10.1007/s10596-013-9382-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-013-9382-y

Keywords

  • Poroelasticity
  • Geomechanics
  • Multipoint flux mixed finite element
  • Continuous Galerkin
  • Finite volume method