Computational Geosciences

, Volume 18, Issue 1, pp 57–75 | Cite as

Coupling multipoint flux mixed finite element methodswith continuous Galerkin methods for poroelasticity

  • Mary Wheeler
  • Guangri XueEmail author
  • Ivan Yotov


We study the numerical approximation on irregular domains with general grids of the system of poroelasticity, which describes fluid flow in deformable porous media. The flow equation is discretized by a multipoint flux mixed finite element method and the displacements are approximated by a continuous Galerkin finite element method. First-order convergence in space and time is established in appropriate norms for the pressure, velocity, and displacement. Numerical results are presented that illustrate the behavior of the method.


Poroelasticity Geomechanics Multipoint flux mixed finite element Continuous Galerkin Finite volume method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aavastsmark, I., Eigestad, G.T., Klausen, R.A., Wheeler, M.F., Yotov, I.: Convergence of a symmetric MPFA method on quadrilateral grids. Comput. Geosci. 11, 333–345 (2007)CrossRefGoogle Scholar
  2. 2.
    Aavatsmark, I.: An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6, 405–432 (2002)CrossRefGoogle Scholar
  3. 3.
    Aavatsmark, I., Barkve, T., Boe, O., Mannseth, T.: Discretization on unstructured grids for inhomogeneous, anisotropic media, part II: discussion and numerical results. SIAM J. Sci. Comput. 19, 1717–1736 (1998)CrossRefGoogle Scholar
  4. 4.
    Arnold, D.N., Boffi, D., Falk, R.S.: Approximation by quadrilateral finite elements. Math. Comp. 71, 909–922 (2002)CrossRefGoogle Scholar
  5. 5.
    Arnold, D.N., Boffi, D., Falk, R.S.: Quadrilateral \(H({\mathrm div})\) finite elements. SIAM J. Numer. Anal. 42, 2429–2451 (2005). (electronic)CrossRefGoogle Scholar
  6. 6.
    Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)CrossRefGoogle Scholar
  7. 7.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics. Springer-Verlag (2007)Google Scholar
  8. 8.
    Brezzi, F., Douglas, J., Duran, R., Fortin, M.: Mixed finite elements for second order elliptic problems in three variables. Numer. Math. 51, 237–250 (1987)CrossRefGoogle Scholar
  9. 9.
    Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)CrossRefGoogle Scholar
  10. 10.
    Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Spring-Verlag, New York (1991)CrossRefGoogle Scholar
  11. 11.
    Chin, L.Y., Raghavan, R., Thomas, L.: Iterative coupled analysis of geomechanics and fluid flow for rock compaction in reservoir simulation. Oil Gas Sci. Tech. 57, 485–497 (2002)CrossRefGoogle Scholar
  12. 12.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies of Mathematics Applied, vol. 4. North-Holland, Amsterdam, 1978; reprinted, SIAM, Philadelphia (2002)Google Scholar
  13. 13.
    Edwards, M.G.: Unstructured control-volume distributed, full-tensor finite-volume schemes with flow based grids. Comput. Geosci. 6, 433–452 (2002)CrossRefGoogle Scholar
  14. 14.
    Edwards, M.G., Rogers, C.F.: Finite volume discretization with imposed flux continuity for the general tensor pressure equation. Comput. Geosci. 2, 259–290 (1998)CrossRefGoogle Scholar
  15. 15.
    Ewing, R.E., Iliev, O.P., Lazarov, R.D., Naumovich, A.: On convergence of certain finite volume difference discretizations for 1D poroelasticity interface problems. Numer. Methods Partial Differ. Equ. 23, 652–671 (2007)CrossRefGoogle Scholar
  16. 16.
    Falk, R.S., Gatto, P., Monk, P.: Hexahedral H(div) and H(curl) finite elements. Math. Mod. Numer. Anal. 45(1), 115–143 (2010)CrossRefGoogle Scholar
  17. 17.
    Gai, X.: A Coupled Geomechanics and Reservoir Flow Model on Parallel Computers. PhD thesis, University of Texas at Austin, Texas (2004)Google Scholar
  18. 18.
    Gai, X., Dean, R., Wheeler, M.F., Liu, R.: Coupled geomechanical and reservoir modeling on parallel computers. In: Proceedings of SPE Reservoir Symposium. SPE, Houston. SPE 79700 (2003)Google Scholar
  19. 19.
    Gaspar, F.J., Lisbona, F.J., Vabishchevich, P.N.: A finite difference analysis of Biot’s consolidation model. Appl. Numer. Math. 44, 487–506 (2003)CrossRefGoogle Scholar
  20. 20.
    Girault, V., Pencheva, G., Wheeler, M.F., Wildey, T.M.: Domain decomposition for poroelasticity and elasticity with DG jumps and mortars. Math. Model. Meth. Appl. Sci. 21, 169–213 (2011)CrossRefGoogle Scholar
  21. 21.
    Ingram, R., Wheeler, M.F., Yotov, I.: A multipoint flux mixed finite element method on hexahedra. SIAM J. Numer. Anal. 48, 1281–1312 (2010)CrossRefGoogle Scholar
  22. 22.
    Klausen, R.A., Radu, F.A., Eigestad, G.T.: Convergence of MPFA on triangulations and for Richards’ equation. Int. J. Numer. Meth. Fluids 58, 1327–1351 (2008)CrossRefGoogle Scholar
  23. 23.
    Klausen, R.A., Winther, R.: Convergence of multipoint flux approximations on quadrilateral grids. Numer. Methods Partial Differ. Equ. 22, 1438–1454 (2006)CrossRefGoogle Scholar
  24. 24.
    Klausen, R.A., Winther, R.: Robust convergence of multi point flux approximation on rough grids. Numer. Math. 104, 317–337 (2006)CrossRefGoogle Scholar
  25. 25.
    Korsawe, J., Starke, G.: A least-squares mixed finite element method for Biot’s consolidation problem in porous media. SIAM J. Numer. Anal. 43, 318–339 (2005). (electronic)CrossRefGoogle Scholar
  26. 26.
    Korsawe, J., Starke, G., Wang, W., Kolditz, O.: Finite element analysis of poro-elastic consolidation in porous media: Standard and mixed approaches. Comput. Methods Appl. Mech. Eng. 195, 1096–1115 (2006)CrossRefGoogle Scholar
  27. 27.
    Liu, R.: Discontinuous Galerkin Finite Element Solution for Poromechanics. PhD thesis, The University of Texas at Austin (2004)Google Scholar
  28. 28.
    Liu, R., Wheeler, M.F., Dawson, C., Dean, R.: On a coupled discontinuous/continuous Galerkin framework and an adaptive penalty scheme for poroelasticity problems. Comput. Meth. Appl. Mech. Eng. 198, 3499–3510 (2009)CrossRefGoogle Scholar
  29. 29.
    Matthies, G.: Mapped finite elements on hexahedra. necessary and sufficient conditions for optimal interpolation errors. Numer. Algorithm. 27, 317–327 (2001)CrossRefGoogle Scholar
  30. 30.
    Murad, M.A., Loula, A.FD.: Improved accuracy in finite element analysis of Biot’s consolidation problem. Comput. Methods Appl. Mech. Engrg. 95, 359–382 (1992)CrossRefGoogle Scholar
  31. 31.
    Murad, M.A., Loula, A.FD.: On stability and convergence of finite element approximations of Biot’s consolidation problem. Int. J. Numer. Methods Eng. 37, 645–667 (1994)CrossRefGoogle Scholar
  32. 32.
    Murad, M.A., Thomée, V., Loula, A.FD.: Asymptotic behavior of semidiscrete finite-element approximations of Biot’s consolidation problem. SIAM J. Numer. Anal. 33, 1065–1083 (1996)CrossRefGoogle Scholar
  33. 33.
    Naff, R., Russell, T., Wilson, J.D.: Shape functions for velocity interpolation in general hexahedral cells. Comp. Geosci. 6, 285–314 (2002)CrossRefGoogle Scholar
  34. 34.
    Nedelec, J.C.: Mixed finite elements in \(r^{3}\). Numer. Math. 35, 315–341 (1980)CrossRefGoogle Scholar
  35. 35.
    Phillips, P.J.: Finite Element Methods in Linear Poroelasticity: Theoretical and Computational Results. PhD thesis, University of Texas at Austin (2005)Google Scholar
  36. 36.
    Phillips, P.J., Wheeler, M.F.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case. Comput. Geosci. 11, 131–144 (2007)CrossRefGoogle Scholar
  37. 37.
    Phillips, P.J., Wheeler, M.F.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: the discrete in time case. Comput. Geosci. 11, 145–158 (2007)CrossRefGoogle Scholar
  38. 38.
    Phillips, P.J., Wheeler, M.F.: A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity. Comput. Geosci. 12, 417–435 (2008)CrossRefGoogle Scholar
  39. 39.
    Raviart, P.A., Thomas, J.: A mixed finite element method for 2nd order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of the Finite Elements Method, Lectures Notes in Math, vol. 606, pp 292–315. Springer, Berlin (1977)CrossRefGoogle Scholar
  40. 40.
    Sboui, A., Jaffre, J., Roberts, J.: A composite mixed finite elements for hexahedral grids. SIAM J. Sci. Comput. 31, 2623–2645 (2009)CrossRefGoogle Scholar
  41. 41.
    Settari, A., Mourits, F.: Coupling of geomechanics and reservoir simulation models. In: Siriwardane, Zaman (eds.) Computer Methods and Advances in Geomechanics, pp. 2151–2158. Balkema Rotterdam (1994)Google Scholar
  42. 42.
    Showalter, R.: Diffusion in poro-elastic media. J. Math. Anal. Appl. 251, 310–340 (2000)CrossRefGoogle Scholar
  43. 43.
    Wang, J., Mathew, T.P.: Mixed finite element method over quadrilaterals. In: Dimov, I.T., Sendov, B., Vassilevski, P. (eds.) Conference on Advances in Numerical Methods and Applications, pp 203–214. World Scientific, River Edge (1994)Google Scholar
  44. 44.
    Wheeler, M.F., Yotov, I.: A multipoint flux mixed finite element method. SIAM J. Numer. Anal. 44, 2082–2106 (2006)CrossRefGoogle Scholar
  45. 45.
    Wheeler, M., Xue, G., Yotov, I.: Benchmark 3D: A multipoint flux mixed finite element method on general hexahedra. In: Finite Volumes for Complex Applications VI Problems & Perspectives. Springer Proceedings in Mathematics, vol. 4, pp. 1055–1065 (2011)Google Scholar
  46. 46.
    Wheeler, M., Xue, G., Yotov, I.: Accurate cell-centered discretizations for modeling multiphase flow in porous media on general hexahedral and simplicial grids. SPE J. 7, 779–793 (2012)Google Scholar
  47. 47.
    Wheeler, M., Xue, G., Yotov, I.: A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra. Numer. Math. 121, 165–204 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute for Computational Engineering and SciencesThe University of Texas at AustinAustinUSA
  2. 2.Shell Technology Center HoustonShell International Exploration and Production Co.HoustonUSA
  3. 3.Department of MathematicsUniversity of PittsburghPittsburghUSA

Personalised recommendations