Skip to main content
Log in

Training image-based scenario modeling of fractured reservoirs for flow uncertainty quantification

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Geological characterization of naturally fractured reservoirs is potentially associated with large uncertainty. However, the geological modeling of discrete fracture networks (DFN) is considerably disconnected from uncertainty modeling based on conventional flow simulators in practice. DFN models provide a geologically consistent way of modeling fractures in reservoirs. However, flow simulation of DFN models is currently infeasible at the field scale. To translate DFN models to dual media descriptions efficiently and rapidly, we propose a geostatistical approach based on patterns. We will use experimental design to capture the uncertainties in the fracture description and generate DFN models. The DFN models are then upscaled to equivalent continuum models. Patterns obtained from the upscaled DFN models are reduced to a manageable set and used as training images for multiple-point statistics (MPS). Once the training images are obtained, they allow for fast realization of dual-porosity descriptions with MPS directly, while circumventing the time-consuming process of DFN modeling and upscaling. We demonstrate our ideas on a realistic Middle East-type fractured reservoir system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warren, J.E., Root, P.J.: The behavior of naturally fractured reservoirs. Soc. Petr. Eng. J. 3(3), 245–255 (1963). doi:10.2118/426-PA

    Google Scholar 

  2. Dershowitz, B., LaPointe, P., Eiben, T., Wei, L.: Integration of discrete feature network methods with conventional simulator approaches. SPE. Reserv. Eval. Eng. 3(2), 165–170 (2000). doi:10.2118/62498-PA

    Google Scholar 

  3. Cacas, M.C., Daniel, J.M., Letouzey, J.: Nested geological modelling of naturally fractured reservoirs. Pet. Geosci. 7, 43–52 (2001)

    Article  Google Scholar 

  4. Zhong, J., Aydina, A., McGuinness, D.L.: Ontology of fractures. J. Struct. Geol. 31, 251–259 (2009)

    Article  Google Scholar 

  5. Guerriero, V., Iannace, A., Mazzoli, S., Parente, M., Vitale, S., Giorgioni, M.: Quantifying uncertainties in multi-scale studies of fractured reservoir analogues: implemented statistical analysis of scan line data from carbonate rocks. J. Struct. Geol. 32, 1271–1278 (2010)

    Article  Google Scholar 

  6. Caers, J., Zhang, T.: Multiple-point geostatistics: a quantitative vehicle for integrating geologic analogs into multiple reservoir models. In: Grammer, G.M., Harris, P.M., Eberli, G.P. (eds.) Integration of Outcrop and Modern Analogs in Reservoir Modeling, pp 383–394. AAPG, Tulsa (2002)

  7. Strebelle, S.: Conditional simulation of complex geological structures using multiple-point statistics. Math. Geol. 34, 1–21 (2002)

    Article  Google Scholar 

  8. Caers, J., Strebelle, S., Payrazyan, K.: Stochastic integration of seismic data and geologic scenarios: a West Africa submarine channel saga. Lead. Edge 22, 192–196 (2003)

    Article  Google Scholar 

  9. Hu, L.Y., Chugunova, T.: Multiple-point geostatistics for modeling subsurface heterogeneity: a comprehensive review. Water Resour. Res. 44, W11413 (2008)

    Google Scholar 

  10. Daly, C., Caers, J.: Multi-point geostatistics—an introductory overview. First Break 28, 39–47 (2010)

    Google Scholar 

  11. Bond, C.E., Gibbs, A.D., Shipton, Z.K., Jones, S.: What do you think this is? Conceptual uncertainty in geoscience interpretation. GSA Today 17, 4–10 (2007)

    Article  Google Scholar 

  12. Cherpeau, N., Caumon, G., Caers, J., Lévy, B.: Method for stochastic inverse modeling of fault geometry and connectivity using flow data. Math. Geosci. 44, 147–168 (2012)

    Article  Google Scholar 

  13. Feyen, L., Caers, J.: Quantifying geological uncertainty for flow and transport modeling in multi-modal heterogeneous formations. Adv. Water Resour. 29, 912–929 (2006)

    Article  Google Scholar 

  14. Suzuki, S., Caumon, G., Caers, J.: Dynamic data integration for structural modeling: model screening approach using a distance-based model parameterization. Comput. Geosci. 12, 105–119 (2008)

    Article  Google Scholar 

  15. Scheidt, C., Caers, J.: Uncertainty quantification in reservoir performance using distances and Kernel methods—application to a West Africa deepwater turbidite reservoir. SPEJ 14(4), 680–692 (2009). doi:10.2118/118740-PA

    Google Scholar 

  16. Park, H., Scheidt, C., Fenwick, D., Boucher, A., Caers, J.: History matching and uncertainty quantification of facies models with multiple geological interpretations. Comput. Geosci. 17(4), 609–621 (2013). doi:10.1007/s10596-013-9343-5

    Article  Google Scholar 

  17. Bourbiaux, B., Basquet, R., Cacas, M.-C., Daniel, J.-M., Sarda, S.: An integrated workflow to account for multi-scale fractures in reservoir simulation models: implementation and benefits.In: Proceedings of Abu Dhabi International Petroleum Exhibition and Conference (2002)

  18. Souche, L., Astratti, D., Aarre, V., Clerc, N., Clark, A., Al Dayyni, T.N.A., Mahmoud, S.L.: A dual representation of multiscale fracture network modelling: application to a giant UAE carbonate field. First Break 30, 43–52 (2012)

    Google Scholar 

  19. Saleri, N.G., Al-Kaabi, A.O., Muallem, A.S.: Haradh III: a milestone for smart fields. J. Pet. Technol. 58, 28–32 (2006)

    Google Scholar 

  20. Streamsim Technologies: 3DSL user manual V 4.10., San Francisco (2013)

  21. Ehrenberg, S.N., Nadeau, P.H., Aqrawi, A.AM.: A comparison of Khuff and Arab reservoir potential throughout the Middle East. AAPG Bull. 91, 275–286 (2007)

    Article  Google Scholar 

  22. Kazemi, H., Merrill, L.S., Porterfield, K.L., Zeman, P.R.: Numerical simulation of water-oil flow in naturally fractured reservoirs. SPE J. 16(6), 317–326 (1976). doi:10.2118/5719-PA

    Google Scholar 

  23. Nelson, R.: Geologic Analysis of Naturally Fractured Reservoirs, 2nd edn. Gulf Professional Publishing, Oxford (2001)

  24. Zahm, C.K., Hennings, P.H.: Complex fracture development related to stratigraphic architecture: challenges for structural deformation prediction, Tensleep Sandstone at the Alcova anticline, Wyoming. AAPG Bull. 93, 1427–1446 (2009)

    Article  Google Scholar 

  25. Chopra, S., Marfurt, K.J.: Volumetric curvature attributes for fault/fracture characterization. First Break 25, 35–46 (2007)

    Google Scholar 

  26. Narr, W., Schechter, D.S., Thompson, L.B.: Naturally Fractured Reservoir Characterization. Society of Petroleum Engineers, Richardson (2006)

    Google Scholar 

  27. Chopra, S.: Coherence cube and beyond. First Break 20, 27–33 (2002)

    Article  Google Scholar 

  28. Neves, F.A., Zahrani, M.S., Bremkamp, S.W.: Detection of potential fractures and small faults using seismic attributes. Lead. Edge 23, 903–906 (2004)

    Article  Google Scholar 

  29. Gabrielsen, R.H.: Characterization of joints and faults. In: Rock Joints: Proceedings of a Regional Conference of the International Society for Rock Mechanics, Loen, 4-6 June 1990, pp 11–17. Taylor & Francis (Balkema), Rotterdam (1990)

    Google Scholar 

  30. Questiaux, J.-M., Couples, G.D., Ruby, N.: Fractured reservoirs with fracture corridors. Geophys. Prospect. 58, 279–295 (2010)

    Article  Google Scholar 

  31. Dershowitz, W.S., Herda, H.H.: Interpretation of fracture spacing and intensity. In: Tillerson and Wawersik (eds.) The 33rd U.S. Symposium on Rock Mechanics (USRMS), June 3–5, 1992, pp 757–766. American Rock Mechanics Association, Santa Fe, NM, Alexandria (1992)

  32. Golder Associates: FracMan 7.4., Redmond (2012)

  33. Jones, M.A., Pringle, A.B., Fulton, I.M., O’Neill, S.: Discrete fracture network modelling applied to groundwater resource exploitation in southwest Ireland. Geol. Soc. Lond. Spec. 155, 83–103 (1999)

    Article  Google Scholar 

  34. Snow, D.T.: Anisotropie permeability of fractured media. Water Resour. Res. 5, 1273–1289 (1969)

    Article  Google Scholar 

  35. Brown, S.R.: Fluid flow through rock joints: the effect of surface roughness. J. Geophys. Res.: Solid Earth. 92, 1337–1347 (1987)

    Article  Google Scholar 

  36. Renshaw, C.E., Park, J.C.: Effect of mechanical interactions on the scaling of fracture length and aperture. Nature 386, 482–484 (1997)

    Article  Google Scholar 

  37. Oda, M.: Permeability tensor for discontinuous rock masses. Geotechnique 35, 483–495 (1985)

    Article  Google Scholar 

  38. Caers, J.: Modeling Uncertainty in the Earth Sciences. Wiley, Oxford (2011)

  39. Scheidt, C., Caers, J.: Representing spatial uncertainty using distances and kernels. Math. Geosci. 41, 397–419 (2008)

    Article  Google Scholar 

  40. Dubuisson, M.-P., Jain, A.K.: A modified Hausdorff distance for object matching. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, 1994. Conference A: Computer Vision Image Processing, vol. 1, pp 566–568 (1994)

  41. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K.: Cluster: Cluster Analysis Basics and Extensions. R package version 1.14.1 (2011)

  42. R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2011)

    Google Scholar 

  43. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  44. Honarkhah, M., Caers, J.: Stochastic simulation of patterns using distance-based pattern modeling. Math. Geosci. 42, 487–517 (2010)

    Article  Google Scholar 

  45. Remy, N., Boucher, A., Wu, J.: Applied Geostatistics with SGeMS: A User’s Guide. Cambridge University Press, Cambridge (2009)

  46. Honarkhah, M., Caers, J.: Direct pattern-based simulation of non-stationary geostatistical models. Math. Geosci. 44, 651–672 (2012)

    Article  Google Scholar 

  47. Lees, J.M.: RFOC: Graphics for Spherical Distributions and Earthquake Focal Mechanisms. R package version 3, 2 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, A., Fenwick, D.H. & Caers, J. Training image-based scenario modeling of fractured reservoirs for flow uncertainty quantification. Comput Geosci 17, 1015–1031 (2013). https://doi.org/10.1007/s10596-013-9372-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-013-9372-0

Keywords

Navigation