Computational Geosciences

, Volume 17, Issue 6, pp 913–927 | Cite as

Large-scale stochastic linear inversion using hierarchical matrices

Illustrated with an application to crosswell tomography in seismic imaging
  • Sivaram Ambikasaran
  • Judith Yue Li
  • Peter K. Kitanidis
  • Eric Darve
Original Paper

Abstract

Stochastic inverse modeling deals with the estimation of functions from sparse data, which is a problem with a nonunique solution, with the objective to evaluate best estimates, measures of uncertainty, and sets of solutions that are consistent with the data. As finer resolutions become desirable, the computational requirements increase dramatically when using conventional solvers. A method is developed in this paper to solve large-scale stochastic linear inverse problems, based on the hierarchical matrix (or 2 matrix) approach. The proposed approach can also exploit the sparsity of the underlying measurement operator, which relates observations to unknowns. Conventional direct algorithms for solving large-scale linear inverse problems, using stochastic linear inversion techniques, typically scale as 𝒪(n2m+nm2), where n is the number of measurements and m is the number of unknowns. We typically have nm. In contrast, the algorithm presented here scales as 𝒪(n2m), i.e., it scales linearly with the larger problem dimension m. The algorithm also allows quantification of uncertainty in the solution at a computational cost that also grows only linearly in the number of unknowns. The speedup gained is significant since the number of unknowns m is often large. The effectiveness of the algorithm is demonstrated by solving a realistic crosswell tomography problem by formulating it as a stochastic linear inverse problem. In the case of the crosswell tomography problem, the sparsity of the measurement operator allows us to further reduce the cost of our proposed algorithm from 𝒪(n2m) to \(\mathcal {O}(n^{2} \sqrt {m} + nm)\). The computational speedup gained by using the new algorithm makes it easier, among other things, to optimize the location of sources and receivers, by minimizing the mean square error of the estimation. Without this fast algorithm, this optimization would be computationally impractical using conventional methods.

Keywords

Stochastic inverse modeling Numerical linear algebra Hierarchical matrices Large-scale problems Subsurface imaging Tomography Geostatistical estimation 

Mathematics Subject Classification (2010)

86-08 65F30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajo-Franklin, J.: Optimal experiment design for time-lapse travel time tomography. Geophysics 74(4), Q27–Q40 (2009)CrossRefGoogle Scholar
  2. 2.
    Barnes, J., Hut, P.: A hierarchical 𝒪(N log N) force-calculation algorithm. Nature 324(4), 446–449 (1986)CrossRefGoogle Scholar
  3. 3.
    Beatson, R., Greengard, L.: A short course on fast multipole methods. Wavelets, Multilevel Methods and Elliptic PDEs, pp 1–37 (1997)Google Scholar
  4. 4.
    Beatson, R., Newsam, G.: Fast evaluation of radial basis functions: I. Comput. Math. Appl. 24(12), 7–19 (1992)CrossRefGoogle Scholar
  5. 5.
    Bjørnstad, O., Falck, W.: Nonparametric spatial covariance functions: estimation and testing. Environ. Ecol. Stat. 8(1), 53–70 (2001)CrossRefGoogle Scholar
  6. 6.
    Börm, S., Grasedyck, L., Hackbusch, W.: Hierarchical matrices. Lect. Notes, 21 (2005)Google Scholar
  7. 7.
    Burrus, C., Gopinath, R., Guo, H.: Introduction to wavelets and wavelet transforms: a primer. Recherche 67, 02 (1998)Google Scholar
  8. 8.
    Cheng, H., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 155(2), 468–498 (1999)CrossRefGoogle Scholar
  9. 9.
    Cheng, H., Gimbutas, Z., Martinsson, P., Rokhlin, V.: On the compression of low-rank matrices. SIAM J. Sci. Comput. 26(4), 1389–1404 (2005)CrossRefGoogle Scholar
  10. 10.
    Coifman, R., Rokhlin, V., Wandzura, S.: The fast multipole method for the wave equation: a pedestrian prescription. IEEE Trans. Antennas Propag. Mag. 35(3), 7–12 (1993)CrossRefGoogle Scholar
  11. 11.
    Cooley, J., Tukey, J.: An algorithm for the machine calculation of complex fourier series. Math. Comput. 19(90), 297–301 (1965)CrossRefGoogle Scholar
  12. 12.
    Cornford, D., Csató, L., Opper, M.: Sequential, bayesian geostatistics: a principled method for large data sets. Geogr. Anal. 37(2), 183–199 (2005)CrossRefGoogle Scholar
  13. 13.
    Daley, T., Ajo-Franklin, J., Doughty, C.: Integration of crosswell CASSM (continuous active source seismic monitoring) and flow modeling for imaging of a CO2 plume in a brine aquiferIn: 2008 SEG Annual Meeting (2008)Google Scholar
  14. 14.
    Daley, T.M., Solbau, R.D., Ajo-Franklin, J.B., Benson, S.M.: Continuous active-source seismic monitoring of CO2 injection in a brine aquifer. Geophysics 72(5), A57–A61 (2007)CrossRefGoogle Scholar
  15. 15.
    Darve, E.: The fast multipole method I: error analysis and asymptotic complexity. SIAM J. Numer. Anal. 38(1), 98–128 (2000a)CrossRefGoogle Scholar
  16. 16.
    Darve, E.: The fast multipole method: numerical implementation. J. Comput. Phys. 160(1), 195–240 (2000b)CrossRefGoogle Scholar
  17. 17.
    Davis, T.: Direct methods for sparse linear systems. Soc. Ind. Math. 2 (2006)Google Scholar
  18. 18.
    Doughty, C., Freifeld, B., Trautz, R.: Site characterization for CO2 geologic storage and vice versa: the Frio brine pilot, Texas, USA as a case study. Environ. Geol. 54(8), 1635–1656 (2008)CrossRefGoogle Scholar
  19. 19.
    Fong, W., Darve, E.: The black-box fast multipole method. J. Comput. Phys. 228(23), 8712–8725 (2009)CrossRefGoogle Scholar
  20. 20.
    Frieze, A., Kannan, R., Vempala, S.: Fast Monte-Carlo algorithms for finding low-rank approximations. J. ACM (JACM) 51(6), 1025–1041 (2004)CrossRefGoogle Scholar
  21. 21.
    Fritz, J., Neuweiler, I., Nowak, W.: Application of FFT-based algorithms for large-scale universal kriging problems. Math. Geosci. 41(5), 509–533 (2009)CrossRefGoogle Scholar
  22. 22.
    Golub, G., Van Loan, C.: Matrix Computations, vol. 3. Johns Hopkins Univ Press (1996)Google Scholar
  23. 23.
    Goreinov, S., Tyrtyshnikov, E., Zamarashkin, N.: A theory of pseudoskeleton approximations. Linear Algebra Appl. 261(1-3), 1–21 (1997)CrossRefGoogle Scholar
  24. 24.
    Grasedyck, L., Hackbusch, W.: Construction and arithmetics of -matrices. Computing 70(4), 295–334 (2003)CrossRefGoogle Scholar
  25. 25.
    Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)CrossRefGoogle Scholar
  26. 26.
    Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numer. 6(1), 229–269 (1997)CrossRefGoogle Scholar
  27. 27.
    Gu, M., Eisenstat, S.: Efficient algorithms for computing a strong rank-revealing QR factorization. Society 17(4), 848–869 (1996)Google Scholar
  28. 28.
    Hackbusch, W.: A sparse matrix arithmetic based on -matrices. Part I: introduction to -matrices. Computing 62(2), 89–108 (1999)CrossRefGoogle Scholar
  29. 29.
    Hackbusch, W., Börm, S.: Data-sparse approximation by adaptive 2-matrices. Computing 69(1), 1–35 (2002)CrossRefGoogle Scholar
  30. 30.
    Hackbusch, W., Khoromskij, B.: A sparse -matrix arithmetic. Computing 64(1), 21–47 (2000)Google Scholar
  31. 31.
    Hackbusch, W., Nowak, Z.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54(4), 463–491 (1989)CrossRefGoogle Scholar
  32. 32.
    Kitanidis, P.: Statistical estimation of polynomial generalized covariance functions and hydrologic applications. Water Resour. Res. 19(4), 909–921 (1983)CrossRefGoogle Scholar
  33. 33.
    Kitanidis, P.: Generalized covariance functions in estimation. Math. Geol. 25(5), 525–540 (1993)CrossRefGoogle Scholar
  34. 34.
    Kitanidis, P.: Quasi-linear geostatistical theory for inversing. Water Resour. Res. 31(10), 2411–2419 (1995)CrossRefGoogle Scholar
  35. 35.
    Kitanidis, P.: On the geostatistical approach to the inverse problem. Adv. Water Resour. 19(6), 333–342 (1996)CrossRefGoogle Scholar
  36. 36.
    Kitanidis, P.: Generalized covariance functions associated with the Laplace equation and their use in interpolation and inverse problems. Water Resour. Res. 35(5), 1361–1367 (1999)CrossRefGoogle Scholar
  37. 37.
    Kitanidis, P., Vomvoris, E.: A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulations. Water Resour. Res. 19(3), 677–690 (1983)CrossRefGoogle Scholar
  38. 38.
    Kitanidis, P.K.: Introduction to Geostatistics: Applications to Hydrogeology. Cambridge Univ Pr (1997)Google Scholar
  39. 39.
    Kitanidis, P.K.: On stochastic inverse modeling. Geophys. Monogr. Ser. 171, 19–30 (2007)Google Scholar
  40. 40.
    Li, W., Cirpka, O.: Efficient geostatistical inverse methods for structured and unstructured grids. Water Resour. Res. 42(6), W06,402 (2006)Google Scholar
  41. 41.
    Liberty, E., Woolfe, F., Martinsson, P., Rokhlin, V., Tygert, M.: Randomized algorithms for the low-rank approximation of matrices. Proc. Natl. Acad. Sci. 104(51), 20,167 (2007)CrossRefGoogle Scholar
  42. 42.
    Liu, X., Kitanidis, P.: Large-scale inverse modeling with an application in hydraulic tomography. Water Resour. Res. 47(2), W02,501 (2011)Google Scholar
  43. 43.
    Liu, X., Illman, W., Craig, A., Zhu, J., Yeh, T.: Laboratory sandbox validation of transient hydraulic tomography. Water Resour. Res. 43(5), W05,404 (2007)Google Scholar
  44. 44.
    Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation.IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)CrossRefGoogle Scholar
  45. 45.
    Mallat, S.: A Wavelet Tour of Signal Processing. Academic (1999)Google Scholar
  46. 46.
    Messner, M., Schanz, M., Darve, E.: Fast directional multilevel summation for oscillatory kernels based on Chebyshev interpolation. J. Comput. Phys. 231(4), 1175–1196 (2012)CrossRefGoogle Scholar
  47. 47.
    Miranian, L., Gu, M.: Strong rank revealing LU factorizations. Linear Algebra Appl. 367, 1–16 (2003)CrossRefGoogle Scholar
  48. 48.
    Nishimura, N.: Fast multipole accelerated boundary integral equation methods. Appl. Mech. Rev. 55(4), 299–324 (2002)CrossRefGoogle Scholar
  49. 49.
    Nowak, W., Cirpka, O.: Geostatistical inference of hydraulic conductivity and dispersivities from hydraulic heads and tracer data. Water Resour. Res. 42(8), 8416 (2006)Google Scholar
  50. 50.
    Nowak, W., Tenkleve, S., Cirpka, O.: Efficient computation of linearized cross-covariance and auto-covariance matrices of interdependent quantities. Math. Geol. 35(1), 53–66 (2003)CrossRefGoogle Scholar
  51. 51.
    Pollock, D., Cirpka, O.: Fully coupled hydrogeophysical inversion of synthetic salt tracer experiments. Water Resour. Res. 46(7), W07,501 (2010)Google Scholar
  52. 52.
    Pruess, K.: ECO2N: A TOUGH2 Fluid Property Module For Mixtures Of Water, NaCl, and CO2. Lawrence Berkeley National Laboratory (2005)Google Scholar
  53. 53.
    Pruess, K., Oldenburg, C., Moridis, G.: TOUGH2 User’s Guide, Version 2.0 (1999)Google Scholar
  54. 54.
    Rjasanow, S.: Adaptive cross approximation of dense matrices. In: IABEM 2002, International Association for Boundary Element Methods (2002)Google Scholar
  55. 55.
    Saad, Y.: Iterative Methods for Sparse Linear Systems, vol. 20. PWS, Boston (1996)Google Scholar
  56. 56.
    Starks, T., Fang, J.: On the estimation of the generalized covariance function. Math. Geol. 14(1), 57–64 (1982)CrossRefGoogle Scholar
  57. 57.
    White, J.: Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics 40(2), 224–232 (1975)CrossRefGoogle Scholar
  58. 58.
    Woolfe, F., Liberty, E., Rokhlin, V., Tygert, M.: A fast randomized algorithm for the approximation of matrices. Appl. Comput. Harmon. Anal. 25(3), 335–366 (2008)CrossRefGoogle Scholar
  59. 59.
    Xia, J., Chandrasekaran, S., Gu, M., Li, X.: Fast algorithms for hierarchically semiseparable matrices. Numer. Linear Algebra Appl. 17(6), 953–976 (2010) zCrossRefGoogle Scholar
  60. 60.
    Ying, L., Biros, G., Zorin, D.: A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J. Comput. Phys. 196(2), 591–626 (2004)CrossRefGoogle Scholar
  61. 61.
    Zimmerman, D.: Computationally efficient restricted maximum likelihood estimation of generalized covariance functions. Math. Geol. 21(7), 655–672 (1989a)CrossRefGoogle Scholar
  62. 62.
    Zimmerman, D.: Computationally exploitable structure of covariance matrices and generalized covariance matrices in spatial models. J. Stat. Comp. Simul. 32(1-2), 1–15 (1989b)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sivaram Ambikasaran
    • 1
  • Judith Yue Li
    • 2
  • Peter K. Kitanidis
    • 2
  • Eric Darve
    • 3
  1. 1.Institute for Computational and Mathematical Engineering, Huang Engineering Center 053BStanford UniversityStanfordUSA
  2. 2.Civil and Environmental Engineering, Yang & Yamazaki Environment & Energy BuildingStanford UniversityStanfordUSA
  3. 3.Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations