Evaluation of Gaussian approximations for data assimilation in reservoir models

Abstract

The Bayesian framework is the standard approach for data assimilation in reservoir modeling. This framework involves characterizing the posterior distribution of geological parameters in terms of a given prior distribution and data from the reservoir dynamics, together with a forward model connecting the space of geological parameters to the data space. Since the posterior distribution quantifies the uncertainty in the geologic parameters of the reservoir, the characterization of the posterior is fundamental for the optimal management of reservoirs. Unfortunately, due to the large-scale highly nonlinear properties of standard reservoir models, characterizing the posterior is computationally prohibitive. Instead, more affordable ad hoc techniques, based on Gaussian approximations, are often used for characterizing the posterior distribution. Evaluating the performance of those Gaussian approximations is typically conducted by assessing their ability at reproducing the truth within the confidence interval provided by the ad hoc technique under consideration. This has the disadvantage of mixing up the approximation properties of the history matching algorithm employed with the information content of the particular observations used, making it hard to evaluate the effect of the ad hoc approximations alone. In this paper, we avoid this disadvantage by comparing the ad hoc techniques with a fully resolved state-of-the-art probing of the Bayesian posterior distribution. The ad hoc techniques whose performance we assess are based on (1) linearization around the maximum a posteriori estimate, (2) randomized maximum likelihood, and (3) ensemble Kalman filter-type methods. In order to fully resolve the posterior distribution, we implement a state-of-the art Markov chain Monte Carlo (MCMC) method that scales well with respect to the dimension of the parameter space, enabling us to study realistic forward models, in two space dimensions, at a high level of grid refinement. Our implementation of the MCMC method provides the gold standard against which the aforementioned Gaussian approximations are assessed. We present numerical synthetic experiments where we quantify the capability of each of the ad hoc Gaussian approximation in reproducing the mean and the variance of the posterior distribution (characterized via MCMC) associated to a data assimilation problem. Both single-phase and two-phase (oil–water) reservoir models are considered so that fundamental differences in the resulting forward operators are highlighted. The main objective of our controlled experiments was to exhibit the substantial discrepancies of the approximation properties of standard ad hoc Gaussian approximations. Numerical investigations of the type we present here will lead to the greater understanding of the cost-efficient, but ad hoc, Bayesian techniques used for data assimilation in petroleum reservoirs and hence ultimately to improved techniques with more accurate uncertainty quantification.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Aanonsen, S.I., Naevdal, G., Oliver, D.S., Reynolds, A.C., Valles, B.: The ensemble Kalman filter in reservoir engineering—a review. SPE J. 14(3), 393–412 (2009)

    Google Scholar 

  2. 2.

    Aarnes, J.E., Gimse, T., Lie, K.-A.: An introduction to the numerics of flow in porous media using Matlab. In: Hasle, G., Lie, K.-A., Quak, E. (eds.) Geometric Modelling, Numerical Simulation, and Optimization, pp. 265–306. Springer, Berlin (2007)

    Google Scholar 

  3. 3.

    Arpat, B., Caers, J., Strebelle, S.: Feature-based geostatistics: an application to a submarine channel reservoir. In: Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, Texas, SPE 77426 (2002)

  4. 4.

    Barker, J.W., Cuypers, M., Holden, L.: Quantifying uncertainty in production forecasts: another look at the PUNQ-S3 problem. SPE J. 6, 433–441 (2001)

    Google Scholar 

  5. 5.

    Brooks, S.P., Gelman, A.: General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998)

    Google Scholar 

  6. 6.

    Chen, Y., Oliver, D.: Cross-covariances and localization for EnKF in multiphase flow data assimilation. Comput. Geosci. 14, 579–601 (2010). doi:10.1007/s10596-009-9174-6

    Article  Google Scholar 

  7. 7.

    Chen, Y., Oliver, D.S.: Ensemble randomized maximum likelihood method as an iterative ensemble smoother. Math. Geosci. 44, 1–26 (2012)

    Article  Google Scholar 

  8. 8.

    Chen, Z., Huan, G., MA, Y.: Computational methods for multiphase flows in Porous Media. Society for Industrial and Applied Mathematics, Philadelphia (2006)

    Book  Google Scholar 

  9. 9.

    Cotter, S.L., Roberts, G.O., Stuart, A.M., White, D.: MCMC methods for functions: modifying old algorithms to make them faster. To Appear. Stat. Sci. (2013, in press). arXiv:1202.0709

  10. 10

    Dashti, M., Law, K.J.H., Stuart, A.M., Voss, J.: Map estimators and posterior consistency in Bayesian nonparametric inverse problems. (2013, submitted). arXiv:1303.4795

  11. 11.

    Deutsch, C.V.: Geostatistical Reservoir Modeling. Oxford University Press, Oxford (2002)

    Google Scholar 

  12. 12.

    Dovera, L., Della Rossa, E.: Multimodal ensemble Kalman filtering using Gaussian mixture models. Comput. Geosci. 15, 307–323 (2011)

    Article  Google Scholar 

  13. 13.

    Efendiev, Y., Datta-Gupta, A., Ma, X., Mallic, B.: Efficient sampling techniques for uncertainty quantification in history matching using nonlinear error models and ensemble level upscaling techniques. Water Resour. Res. 45(W11414), 11 (2009)

    Google Scholar 

  14. 14.

    Emerick, A., Reynolds, A.: EnKF-MCMC. In: Proceedings of the SPE EUROPEC/EAGE Annual Conference and Exhibition, Barcelona, SPE 131375 (2010)

  15. 15.

    Emerick, A., Reynolds, A.: Combining sensitivities and prior information for covariance localization in the ensemble Kalman filter for petroleum reservoir applications. Comput. Geosci. 15, 251–269 (2011). doi:10.1007/s10596-010-9198-y

    Article  Google Scholar 

  16. 16.

    Emerick, A., Reynolds, A.: Combining the ensemble Kalman filter with Markov chain Monte Carlo for improved history matching and uncertainty characterization. SPE J. 17(2), 418–440 (2012)

    Google Scholar 

  17. 17.

    Emerick, A.A., Reynolds, A.C.: Investigation of the sampling performance of ensemble-based methods with a simple reservoir model. Comput. Geosci. 17(2), 325–350 (2013)

    Article  Google Scholar 

  18. 18.

    Gao, G., Zafari, M., Reynolds, A.: Quantifying uncertainty for the PUNQ-S3 problem in a Bayesian setting with RML and EnKF. SPE J. 11, 506–515 (2006)

    Google Scholar 

  19. 19.

    Gaspari, G., Cohn, S.E.: Construction of correlation functions in two and three dimensions. Q. J. R. Meteorol. Soc. 125(554), 723–757 (1999)

    Article  Google Scholar 

  20. 20.

    Kaipio, J.P., Somersalo, E.: Statistical and Computational Inverse Problems. Springer, New York (2005)

    Google Scholar 

  21. 21.

    Law, K.J.H., Stuart, A.M.: Evaluating data assimilation algorithms. Mon. Weather Rev. 140, 3757–3782 (2012)

    Article  Google Scholar 

  22. 22.

    Li, G., Reynolds, A.: Iterative ensemble Kalman filters for data assimilation. In: Proceedings of the SPE Annual Technical Conference and Exhibition, Anaheim, California, SPE 109808 (2007)

  23. 23.

    Liu, N., Oliver, D.S.: Evaluation of Monte Carlo methods for assessing uncertainty. SPE J. 8, 188–195 (2003)

    Google Scholar 

  24. 24.

    Iglesias, K., Law, M., Stuart, A.M.: Ensemble Kalman methods for inverse problems. Inverse Problems 29, 045001 (2013). arXiv:1202.0709

    Article  Google Scholar 

  25. 25.

    Ma, X., Al-Harbi, A., Datta-Gupta, A., Efendiev, Y.: An efficient two-stage sampling method for uncertainty quantification in history matching geological models. SPE J. 13(1), 7787 (2008)

    Google Scholar 

  26. 26.

    Reynolds, A.C., Oliver, D.S., Liu, N.: Inverse Theory for Petroleum Reservoir Characterization and History Matching, 1st edn. ISBN:9780521881517. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  27. 27.

    Oliver, D., Chen, Y.: Recent progress on reservoir history matching: a review. Comput. Geosci. 15, 185–221 (2011). doi:10.1007/s10596-010-9194-2

    Article  Google Scholar 

  28. 28.

    Oliver, D.S., Cunha, L.B., Reynolds, A.C.: Markov chain Monte Carlo methods for conditioning a permeability field to pressure data. Math. Geol. 29, 61–91 (1997)

    Article  Google Scholar 

  29. 29.

    Russell, T.F., Wheeler, M.F.: Finite element and finite difference methods for continuous flows in porous media. In: Ewing, R.E. (ed.) Mathematics of Reservoir Simulation. SIAM, Philadelphia

  30. 30.

    Sakov, P., Oke, P.R.: Implications of the form of the ensemble transformation in the ensemble square root filters. Mon. Wea. Rev. 136, 1042–1053 (2008)

    Article  Google Scholar 

  31. 31.

    Stordal, A.S., Karlsen, H.A., Nvdal, G., Skaug, H.J., Valls, B.: Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter. Comput. Geosci. 15, 293–305 (2011)

    Article  Google Scholar 

  32. 32.

    Stordal, A.S., Valestrand, R., Karlsen, H.A., Nvdal, G., Skaug, H.J.: Comparing the adaptive Gaussian mixture filter with the ensemble Kalman filter on synthetic reservoir models. Comput. Geosci. 16, 467–482 (2012)

    Article  Google Scholar 

  33. 33.

    Stuart, A.M.: Inverse problems: a Bayesian perspective. In Acta Numerica. 19 (2010)

  34. 34.

    Tavakoli, R., Reynolds, A.: Monte Carlo simulation of permeability fields and reservoir performance predictions with SVD parameterization in RML compared with EnKF. Comput. Geosci. 15, 99–116 (2011). doi:10.1007/s10596-010-9200-8

    Article  Google Scholar 

  35. 35

    Naevdal, G., Skaug, H.J., Thulin, K., Aanonsen, S.I.: Quantifying Monte Carlo uncertainty in the ensemble Kalman filter. SPE J. 16(1), 172–182 (2011)

    Google Scholar 

  36. 36.

    Li, G., Wang, Y., Reynolds, A.C.: Estimation of depths of fluid contacts by history matching using iterative ensemble-Kalman smoothers. SPE J. 15(2), 509–525 (2010)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marco A. Iglesias.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iglesias, M.A., Law, K.J.H. & Stuart, A.M. Evaluation of Gaussian approximations for data assimilation in reservoir models. Comput Geosci 17, 851–885 (2013). https://doi.org/10.1007/s10596-013-9359-x

Download citation

Keywords

  • Data assimilation
  • Reservoir characterization
  • Uncertainty quantification
  • Inverse modelling