Skip to main content
Log in

History matching and uncertainty quantification of facies models with multiple geological interpretations

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Uncertainty quantification is currently one of the leading challenges in the geosciences, in particular in reservoir modeling. A wealth of subsurface data as well as expert knowledge are available to quantify uncertainty and state predictions on reservoir performance or reserves. The geosciences component within this larger modeling framework is partially an interpretive science. Geologists and geophysicists interpret data to postulate on the nature of the depositional environment, for example on the type of fracture system, the nature of faulting, and the type of rock physics model. Often, several alternative scenarios or interpretations are offered, including some associated belief quantified with probabilities. In the context of facies modeling, this could result in various interpretations of facies architecture, associations, geometries, and the way they are distributed in space. A quantitative approach to specify this uncertainty is to provide a set of alternative 3D training images from which several geostatistical models can be generated. In this paper, we consider quantifying uncertainty on facies models in the early development stage of a reservoir when there is still considerable uncertainty on the nature of the spatial distribution of the facies. At this stage, production data are available to further constrain uncertainty. We develop a workflow that consists of two steps: (1) determining which training images are no longer consistent with production data and should be rejected and (2) to history match with a given fixed training image. We illustrate our ideas and methodology on a test case derived from a real field case of predicting flow in a newly planned well in a turbidite reservoir off the African West coast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aanonsen, S.I., Nævdal, G., Oliver, D.S., Reynolds, A.C., Vallès, B.: Ensemble Kalman filter in reservoir engineering—a review. SPE J. 14(3), 393–412 (2009)

    Google Scholar 

  2. Abdollahzadeh, A., Reynolds, A., Christie, M., Corne, D., Williams, G., Davies, B.: Estimation of distribution algorithms applied to history matching authors. In: SPE Reservoir Simulation Symposium, 21–23 February 2011, The Woodlands, TX, USA

  3. Agbalaka C.C., Oliver D.S.: Application of the EnKF and localization to automatic history matching of facies distribution and production data. Math. Geosci. 40(4), 353–374 (2008)

    Article  Google Scholar 

  4. Alpak, F., Barton, M., Caers, J.: A flow-based pattern recognition algorithm for rapid quantification of geologic uncertainty. Comput. Geosci. 14(4), 603–621 (2010)

    Article  Google Scholar 

  5. Arnold, D.P., Demyanov, V., Tatum, D., Christie, M., Rojas, T., Corbett, P., Geiger, S.: Hierarchical benchmark case study for history matching, uncertainty quantification and reservoir characterization. Comput. Geosci. 50, 4–15 (2012). doi:10.1016/j.cageo.2012.09.011

    Google Scholar 

  6. Bond, C.E., Gibbs, A., Shipton, Z.K., Jones, S.: What do you think this is? “Conceptual uncertainty” in geoscience interpretation. GSA Today 17, 4–10 (2007)

    Article  Google Scholar 

  7. Caers, J.: History matching under a training image-based geological model constraint. SPE J. 8(3), 218–226 (2003)

    Google Scholar 

  8. Caers, J.: Comparison of the gradual deformation with the probability perturbation method for solving inverse problems. Math. Geol. 39(1), 27–52 (2007)

    Article  Google Scholar 

  9. Caers, J: Modeling Uncertainty in the Earth Sciences. Wiley, Chichester (2011)

    Book  Google Scholar 

  10. Caers, J., Hoffman, B.T.: The probability perturbation method: a new look at Bayesian inverse modeling. Math. Geol. 38(1), 81–100 (2006)

    Article  Google Scholar 

  11. Caers, J., Hoffman, B.T., Strebelle, S., Wen, X.-H.: Probabilistic integration of geologic scenarios, seismic and production data—a West Africa turbidite reservoir case study. Leading Edge 25, 240–244 (2006)

    Article  Google Scholar 

  12. Castro, S., Caers, J., Otterlei, C., Meisingset, H., Hoye, T., Gomel, P., Zachariassen, E.: Incorporating 4D seismic data into reservoir models while honoring production and geologic data: a case study. Leading Edge 28(12), 1498–1505 (2009)

    Article  Google Scholar 

  13. Cherpeau, N., Caumon, G., Caers, J., Lévy, B.: Method for stochastic inverse modeling of fault geometry and connectivity using flow data. Math. Geosci. 44(2), 147–168 (2012)

    Article  Google Scholar 

  14. Coumou, D., Matthäi, S., Geiger, S., Driesner, T.: A parallel FE–FV scheme to solve fluid flow in complex geologic media. Comput. Geosci. 34(12), 1697–1707 (2008)

    Article  Google Scholar 

  15. Dogru, A.H., Sunaidi, H.A., Fung, L.S., Habiballah, W.A., Al-Zamel, N., Li, K.G.: A parallel reservoir simulator for large-scale reservoir simulation. SPE Reservoir Eval. Eng. 5(1), 11–23 (2002)

    Google Scholar 

  16. Efendiev, Y., Hou, T., Luo, W.: Preconditioning Markov chain Monte Carlo simulations using coarse-scale models. SIAM J. Sci. Comput. 28(2), 776–803 (2006)

    Article  Google Scholar 

  17. Evensen, G.: The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 53(4), 343–367 (2003)

    Article  Google Scholar 

  18. Feyen, L., Caers, J.: Quantifying geological uncertainty for flow and transport modeling in multi-modal heterogeneous formations. Adv. Water Resour. 29(6), 912–929 (2006)

    Article  Google Scholar 

  19. Fu, J., Gómez-Hernández, J.: A blocking Markov chain Monte Carlo Method for inverse stochastic hydrogeological modeling. Math. Geosci. 41(2), 105–128 (2009)

    Article  Google Scholar 

  20. Hoffman, B.T., Caers, J.: Regional probability perturbations for history matching. J. Pet. Sci. Eng. 46(1–2), 53–71 (2005)

    Article  Google Scholar 

  21. Hoffman, B.T., Caers, J.: History matching by jointly perturbing local facies proportions and their spatial distribution: application to a North Sea Reservoir. J. Pet. Sci. Eng. 57(3–4), 257–272 (2007)

    Article  Google Scholar 

  22. Hoffman, B.T., Caers J.K., Wen, X.-H., Strebelle, S.: A practical data-integration approach to history matching: application to a deepwater reservoir. SPE J. 11(4), 464–479 (2006)

    Google Scholar 

  23. Hu, L.-Y.: Extended probability perturbation method for calibrating stochastic reservoir models. Math. Geosci. 40(8), 875–885 (2008)

    Article  Google Scholar 

  24. Li, T., Caers, J.: Solving spatial inverse problems using the probability perturbation method: an S-GEMS implementation. Comput. Geosci. 34(9), 1127–1141 (2008)

    Article  Google Scholar 

  25. Li, H., Caers, J.: Geological modelling and history matching of multi-scale flow barriers in channelized reservoirs: methodology and application. Petrol. Geosci. 17(1), 17–34 (2011)

    Article  Google Scholar 

  26. Liu, N., Oliver D.S.: Ensemble Kalman filter for automatic history matching of geologic facies. J. Pet. Sci. Eng. 47(3–4), 147–161 (2005)

    Article  Google Scholar 

  27. Mariethoz, G., Renard, P., Caers, J.: Bayesian inverse problem and optimization with iterative spatial resampling. Water Resour. Res. 46, W11530 (2010). doi:10.1029/2010WR009274

    Google Scholar 

  28. Mosegaard, K., Tarantola, A.: Monte Carlo sampling of solutions to inverse problems. J. Geophys. Res. 100, 12431–12447 (1995)

    Article  Google Scholar 

  29. Oliver, D.S., Chen, Y.: Recent progress on reservoir history matching: a review. Comput. Geosci. 15(1), 185–221 (2011)

    Article  Google Scholar 

  30. Omre, H., Tjelmeland, H.: Petroleum geostatistics. In: Fifth International Geostatistics Congress, Wollongong, Australia (1996)

    Google Scholar 

  31. Peters, E., Chen, Y., Leeuwenburg, O., Oliver, D.S.: Extended Brugge benchmark case on history matching and optimization within a closed-loop concept. Comput. Geosci. 50, 16–24 (2012). doi:10.1016/j.cageo.2012.07.018

    Google Scholar 

  32. Popper, K.: The Logic of Scientific Discovery. Basic Books, New York (1959)

    Google Scholar 

  33. Remy, N., Boucher, A., Wu, J.: Applied Geostatistics with SGeMS: A User’s Guide. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  34. Ronayne, M.J., Gorelick, S.M., Caers, J.: Identifying discrete geologic structures that produce anomalous hydraulic response: an inverse modeling approach. Water Resour. Res. 44, W08426 (2008). doi:10.1029/2007WR006635

    Article  Google Scholar 

  35. Sarma, P., Durlofsky, L.J., Aziz, K.: Kernel principal component analysis for efficient, differentiable parameterization of multipoint geostatistics. Math. Geosci. 40(1), 3–32 (2008)

    Article  Google Scholar 

  36. Scheidt, C., Caers, J.: Representing spatial uncertainty using distances and kernels. Math. Geosci. 41(4), 397–419 (2009a)

    Article  Google Scholar 

  37. Scheidt, C., Caers, J.: Uncertainty quantification in reservoir performance using distances and kernel methods—application to a West-Africa deepwater turbidite reservoir. SPE J. 14(4), 680–692 (2009b)

    Google Scholar 

  38. Scheidt, C., Caers, J.: Bootstrap confidence intervals for reservoir model selection techniques. Comput. Geosci. 14(2), 369–382 (2010)

    Article  Google Scholar 

  39. Strebelle, S.: Conditional simulation of complex geological structures using multiple-point statistics. Math. Geol. 34(1), 1–21 (2002)

    Article  Google Scholar 

  40. Strebelle, S., Payrazyan, K., Caers, J.: Modeling of a deepwater turbidite reservoir conditional to seismic data using principal component analysis and multiple-point geostatistics. SPE J. 8(3), 227–235 (2003)

    Google Scholar 

  41. Suzuki, S., Caers, J.: A distance-based prior model parameterization for constraining solutions of spatial inverse problems. Math. Geosci. 40(4), 445–469 (2008)

    Article  Google Scholar 

  42. Suzuki, S., Caumon, G., Caers, J.: Dynamic data integration for structural modeling: model screening approach using a distance-based model parameterization. Comput. Geosci. 12(1), 105–119 (2008)

    Article  Google Scholar 

  43. Tahmasebi, P., Sahimi, M., Mariethoz, G., Hezarkhani, A.: Accelerating geostatistical simulations using graphics processing units. Comput. Geosci. 46, 51–59 (2012)

    Article  Google Scholar 

  44. Tarantola, A.: Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation. Elsevier, Amsterdam (1987)

    Google Scholar 

  45. Tarantola, A.: Popper, Bayes and the inverse problem. Nat. Phys. 2, 492–494 (2006)

    Article  Google Scholar 

  46. Walsh, S.D., Saar, M.O., Bailey, P., Lilja, D.J.: Accelerating geoscience and engineering system simulations on graphics hardware. Comput. Geosci. 35(12), 2353–2364 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jef Caers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, H., Scheidt, C., Fenwick, D. et al. History matching and uncertainty quantification of facies models with multiple geological interpretations. Comput Geosci 17, 609–621 (2013). https://doi.org/10.1007/s10596-013-9343-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-013-9343-5

Keywords

Navigation