Skip to main content
Log in

Investigation of the sampling performance of ensemble-based methods with a simple reservoir model

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The application of the ensemble Kalman filter (EnKF) for history matching petroleum reservoir models has been the subject of intense investigation during the past 10 years. Unfortunately, EnKF often fails to provide reasonable data matches for highly nonlinear problems. This fact motivated the development of several iterative ensemble-based methods in the last few years. However, there exists no study comparing the performance of these methods in the literature, especially in terms of their ability to quantify uncertainty correctly. In this paper, we compare the performance of nine ensemble-based methods in terms of the quality of the data matches, quantification of uncertainty, and computational cost. For this purpose, we use a small but highly nonlinear reservoir model so that we can generate the reference posterior distribution of reservoir properties using a very long chain generated by a Markov chain Monte Carlo sampling algorithm. We also consider one adjoint-based implementation of the randomized maximum likelihood method in the comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aanonsen, S.I., Nævdal, G., Oliver, D.S., Reynolds, A.C., Vallés, B.: Review of ensemble Kalman filter in petroleum engineering. Soc. Pet. Eng. J. 14(3), 393–412 (2009)

    Google Scholar 

  2. Anderson, J.L., Anderson, S.L.: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Weather Rev. 127(12), 2741–2758 (1999)

    Article  Google Scholar 

  3. Bonet-Cunha, L., Oliver, D.S., Rednar, R.A., Reynolds, A.C.: A hybrid Markov chain Monte Carlo method for generating permeability fields conditioned to multiwell pressure data and prior information. Soc. Pet. Eng. J. 11(3), 261–271 (1998)

    Google Scholar 

  4. Burgers, G., van Leeuwen, P., Evensen, G.: Analysis scheme in the ensemble Kalman filter. Mon. Weather Rev. 126(6), 1719–1724 (1998)

    Article  Google Scholar 

  5. Chavent, G.M., Dupuy, M., Lemonnier, P.: History matching by use of optimal control theory. Soc. Pet. Eng. J. 15(1), 74–86 (1975)

    Google Scholar 

  6. Chen, W.H., Gavalas, G.R., Seinfeld, J.H., Wasserman, M.L.: A new algorithm for automatic history matching. Soc. Pet. Eng. J. 14(6), 593–608 (1974)

    Google Scholar 

  7. Chen, Y., Oliver, D.: Ensemble randomized maximum likelihood method as an iterative ensemble smoother. Math. Geosci. 44(1), 1–26 (2011)

    Article  Google Scholar 

  8. de Marsily, G., Lavedan, G., Boucher, M., Fasanino, G.: Interpretation of interference tests in a well field using geostatistical techniques to fit the permeability distribution in a reservoir model. In: Verly, G., David, M., Journel, A.G., and Marechal, A. (eds.) Geostatistics for Natural Resources Characterization, Part 2, pp. 831–849. D. Reidell, Dordrecht (1984)

    Google Scholar 

  9. Emerick, A.A., Reynolds, A.C.: Combining the ensemble Kalman filter with Markov chain Monte Carlo for improved history matching and uncertainty characterization. Soc. Pet. Eng. J. 17(2), 418–440 (2012a)

    Google Scholar 

  10. Emerick, A.A., Reynolds, A.C.: Ensemble smoother with multiple data assimilation. Computers & Geosciences (2012b). doi:10.1016/j.cageo.2012.03.011

    Google Scholar 

  11. Emerick, A.A., Reynolds, A.C.: History matching time-lapse seismic data using the ensemble Kalman filter with multiple data assimilations. Comput. Geosci 16(3), 639–659 (2012c)

    Article  Google Scholar 

  12. Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99(C5), 10,143–10,162 (1994)

    Article  Google Scholar 

  13. Evensen, G.: Sampling strategies and square root analysis schemes for the EnKF. Ocean Dyn. 54(6), 539–560 (2004)

    Article  Google Scholar 

  14. Evensen, G.: The ensemble Kalman filter for combined state and parameter estimation. In: IEEE Control Systems Magazine, pp. 83–104 (2009)

  15. Gao, G., Reynolds, A.C.: An improved implementation of the LBFGS algorithm for automatic history matching. Soc. Pet. Eng. J. 11(1), 5–17 (2006)

    Google Scholar 

  16. Gao, G., Zafari, M., Reynolds, A.C.: Quantifying uncertainty for the PUNQ-S3 problem in a Bayesian setting with RML and EnKF. Soc. Pet. Eng. J. 11(4), 506–515 (2006)

    Google Scholar 

  17. Gelman, A., Roberts, G.O., Gilks, W.R.: Efficient Metropolis jumping rules. Bayesian Stat. Oxford University Press 5(5), 599–607 (1996)

    Google Scholar 

  18. Gu, Y., Oliver, D.S.: An iterative ensemble Kalman filter for multiphase fluid flow data assimilation. Soc. Pet. Eng. J. 12(4), 438–446 (2007)

    Google Scholar 

  19. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  Google Scholar 

  20. Houtekamer, P.L., Mitchell, H.L.: Data assimilation using an ensemble Kalman filter technique. Mon. Weather Rev. 126(3), 796–811 (1998)

    Article  Google Scholar 

  21. Houtekamer, P.L., Mitchell, H.L.: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 129(1), 123–137 (2001)

    Article  Google Scholar 

  22. Hu, L.Y.: Gradual deformation and iterative calibration of Gaussian-related stochastic models. Math. Geol. 32(1), 87–108 (2000)

    Article  Google Scholar 

  23. Kitanidis, P.K.: Quasi-linear geostatistical theory for inversing. Water Resour. Res. 31(10), 2411–2419 (1995)

    Article  Google Scholar 

  24. Krymskaya, M.V., Hanea, R.G., Verlaan, M.: An iterative ensemble Kalman filter for reservoir engineering applications. Comput. Geosci 13(2), 235–244 (2009)

    Article  Google Scholar 

  25. LaVenue, A.M., Pickens, J.F.: Application of a coupled adjoint sensitivity and kriging approach to calibrate a groundwater flow model. Water Resour. Res. 28(6), 1543–1569 (1992)

    Article  Google Scholar 

  26. LaVenue, A.M., RamaRao, B.S., de Marsily, G., Marietta, M.G.: Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields, 2. Application, Water Resour. Res. 31(3), 495–516 (1995)

    Article  Google Scholar 

  27. Li, G., Reynolds, A.C.: Iterative ensemble Kalman filters for data assimilation. Soc. Pet. Eng. J. 14(3), 496–505 (2009)

    Google Scholar 

  28. Li, R., Reynolds, A.C., Oliver, D.S.: History matching of three-phase flow production data. Soc. Pet. Eng. J. 8(4), 328–340 (2003)

    Google Scholar 

  29. Liu, D., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503–528 (1989)

    Article  Google Scholar 

  30. Liu, N.: Assessment of Uncertainty Assessment Methods. Master’s thesis, The University of Tulsa, Tulsa, Oklahoma (2002)

  31. Liu, N., Oliver, D.S.: Evaluation of Monte Carlo methods for assessing uncertainty. Soc. Pet. Eng. J. 8(2), 188–195 (2003)

    Google Scholar 

  32. Lorentzen, R.J., Nævdal, G.: An iterative ensemble Kalman filter. IEEE Trans. Automat. Contr. 56(8), 1990–1995 (2011)

    Article  Google Scholar 

  33. Lorentzen, R.J., Nævdal, G., Vallès, B., Berg, A.M., Grimstad, A.-A.: Analysis of the ensemble Kalman filter for estimation of permeability and porosity in reservoir models. In: Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, SPE 96375, 9–12 October 2005

  34. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  35. Moradkhani, H., Sorooshian, S., Gupta, H.V., Mouser, P.R.: Dual state-parameter estimation of hydrological models using ensemble Kalman filter. Adv. Water Resour. 28(2), 301–305 (2005)

    Article  Google Scholar 

  36. Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comput. 35(151), 773–782 (1980)

    Article  Google Scholar 

  37. Oliver, D.S., Cunha, L.B., Reynolds, A.C.: Markov chain Monte Carlo methods for conditioning a permeability field to pressure data. Math. Geol. 29(1), 61–91 (1997)

    Article  Google Scholar 

  38. Oliver, D.S., He, N., Reynolds, A.C.: Conditioning permeability fields to pressure data. In: Proceedings of the European Conference for the Mathematics of Oil Recovery (1996)

  39. Oliver, D.S., Reynolds, A.C., Liu, N.: Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  40. Peaceman, D.W.: Interpretation of well-block pressures in numerical reservoir simulation with non-square grid blocks and anisotropic permeability. Soc. Pet. Eng. J. 23(6), 531–543 (1983)

    Google Scholar 

  41. Reynolds, A.C., He, N., Oliver, D.S.: Reducing uncertainty in geostatistical description with well testing pressure data. In: Schatzinger, R.A., Jordan, J.F. (eds.) Reservoir Characterization—Recent Advances, pp. 149–162. AAPG Memoir 71, Tulsa (1999)

    Google Scholar 

  42. Reynolds, A.C., Zafari, M., Li, G.: Iterative forms of the ensemble Kalman filter. In: Proceedings of 10th European Conference on the Mathematics of Oil Recovery, Amsterdam, 4–7 September 2006

  43. Roberts, G.O., Gelman, A., Gilks, W.R.: Weak convergence and optimal scaling of random walk Metropolis algorithm. Ann. Appl. Probab. 7(1), 110–120 (1997)

    Article  Google Scholar 

  44. Roberts, G.O., Rosenthal, J.S.: Optimal scaling of various Metropolis-Hastings algorithms. Stat. Sci. 16(4), 351–367 (2001)

    Article  Google Scholar 

  45. Roggero, F., Hu, L.Y.: Gradual deformation of continuous geostatistical models for history matching. In: Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, SPE 49004, 27–30 September 1998

  46. Sakov, P., Bertino, L.: Relation between two common localisation methods for the EnKF. Comput. Geosci 15(2), 225–237(2011)

    Article  Google Scholar 

  47. Sakov, P., Oke, P.R.: A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square root filters. Tellus, Ser. A Dyn. Meteorol. Oceanogr. 60(2), 361–371 (2008a)

    Article  Google Scholar 

  48. Sakov, P., Oke, P.R.: Implications of the form of the ensemble transformation in the ensemble square root filters. Mon. Weather Rev. 136, 1042–1053 (2008b)

    Article  Google Scholar 

  49. Skjervheim, J.-A., Evensen, G., Aanonsen, S.I., Ruud, B.O., Johansen, T.A.: Incorporating 4D seismic data in reservoir simulation models using ensemble Kalman filter. Soc. Pet. Eng. J. 12(3), 282–292 (2007)

    Google Scholar 

  50. Sun, A.Y., Morris, A., Mohanty, S.: Comparison of deterministic ensemble Kalman filters for assimilating hydrogeological data. Adv. Water Resour. 32, 280–292 (2009)

    Article  Google Scholar 

  51. Tavakoli, R., Reynolds, A.A.: Monte Carlo simulation of permeability fields and reservoir performance predictions with SVD parameterization in RML compared with EnKF. Comput. Geosci. 15(1), 99–116 (2011)

    Article  Google Scholar 

  52. Thulin, K., Li, G., Aanonsen, S.I., Reynolds, A.C.: Estimation of initial fluid contacts by assimilation of production data with EnKF. In: Proceedings of the SPE Annual Technical Conference and Exhibition, Anaheim, CA, SPE 109975, 11–14 November 2007

  53. Thulin, K., Nævdal, G., Skaug, H.J., Aanonsen, S.I.: Quantifying Monte Carlo uncertainty in the ensemble Kalman field. Soc. Pet. Eng. J. 16(1), 172–182 (2011)

    Google Scholar 

  54. Tippett, M.K., Anderson, J.L., Bishop, C.H., Hamill, T.M., Whitaker, J.S.: Ensemble square-root filters. Mon. Weather Rev. 131, 1485–1490 (2003)

    Article  Google Scholar 

  55. van Leeuwen, P.J., Evensen, G.: Data assimilation and inverse methods in terms of a probabilistic formulation. Mon. Weather Rev. 124, 2898–2913 (1996)

    Article  Google Scholar 

  56. Wang, Y., Li, G., Reynolds, A.C.: Estimation of depths of fluid contacts by history matching using iterative ensemble-Kalman smoothers. Soc. Pet. Eng. J. 15(2) (2010)

  57. Wen, X.-H., Chen, W.H.: Real-time reservoir model updating using ensemble Kalman filter with confirming option. Soc. Pet. Eng. J. 11(4), 431–442 (2006)

    Google Scholar 

  58. Wu, Z., Reynolds, A.C., Oliver, D.S.: Conditioning geostatistical models to two-phase production data. Soc. Pet. Eng. J. 3(2), 142–155 (1999)

    Google Scholar 

  59. Zafari, M., Reynolds, A.C.: Assessing the uncertainty in reservoir description and performance predictions with the ensemble Kalman filter. Soc. Pet. Eng. J. 12(3), 382–391 (2007)

    Google Scholar 

  60. Zhang, F., Reynolds, A.C.: Optimization algorithms for automatic history matching of production data. In: Proceedings of 8th European Conference on the Mathematics of Oil Recovery, Freiberg, Germany, 3–6 September 2002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre A. Emerick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emerick, A.A., Reynolds, A.C. Investigation of the sampling performance of ensemble-based methods with a simple reservoir model. Comput Geosci 17, 325–350 (2013). https://doi.org/10.1007/s10596-012-9333-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-012-9333-z

Keywords

Navigation