Computational Geosciences

, Volume 16, Issue 4, pp 1021–1042 | Cite as

Multidimensional upstream weighting for multiphase transport on general grids

  • Eirik Keilegavlen
  • Jeremy E. Kozdon
  • Bradley T. Mallison
Original Paper

Abstract

The governing equations for multiphase flow in porous media have a mixed character, with both nearly elliptic and nearly hyperbolic variables. The flux for each phase can be decomposed into two parts: (1) a geometry- and rock-dependent term that resembles a single-phase flux; and (2) a mobility term representing fluid properties and rock–fluid interactions. The first term is commonly discretized by two- or multipoint flux approximations (TPFA and MPFA, respectively). The mobility is usually treated with single-point upstream weighting (SPU), also known as dimensional or donor cell upstream weighting. It is well known that when simulating processes with adverse mobility ratios, SPU suffers from grid orientation effects. An important example of this, which will be considered in this work, is the displacement of a heavy oil by water. For these adverse mobility ratio flows, the governing equations are unstable at the modeling scale, rendering a challenging numerical problem. These challenges must be addressed in order to avoid systematic biasing of simulation results. In this work, we present a framework for multidimensional upstream weighting for multiphase flow with buoyancy on general two-dimensional grids. The methodology is based on a dual grid, and the resulting transport methods are provably monotone. The multidimensional transport methods are coupled with MPFA methods to solve the pressure equation. Both explicit and fully implicit approaches are considered for time integration of the transport equations. The results show considerable reduction of grid orientation effects compared to SPU, and the explicit multidimensional approach allows larger time steps. For the implicit method, the total number of non-linear iterations is also reduced when multidimensional upstream weighting is used.

Keywords

Multi-D transport Porous media Phase-based upwinding Two-phase Interaction regions Monotonicity Hyperbolic equations Finite volume General grids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Applied Science Publishers, ISBN: 0-85334-787-5 (1979)Google Scholar
  2. 2.
    Aavatsmark, I.: An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6(3–4), 405–432 (2002)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Edwards, M.G.: Unstructured, control-volume distributed, full-tensor finite-volume schemes with flow based grids. Comput. Geosci. 6(3–4), 433–452 (2002)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Aavatsmark, I., Barkve, T., Bøe, Ø., Mannseth, T.: Discretization on unstructured grids for inhomogeneous, anisotropic media. I. Derivation of the methods. SIAM J. Sci. Comput. 19(5), 1700–1716 (1998)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Aavatsmark, I., Barkve, T., Bøe, O., Mannseth, T.: Discretization on unstructured grids for inhomogeneous, anisotropic media. II. Discussion and numerical results. SIAM J. Sci. Comput. 19(5), 1717–1736 (1998)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Edwards, M.G., Rogers, C.F.: Finite volume discretization with imposed flux continuity for the general tensor pressure equation. Comput. Geosci. 2(4), 259–290 (1998)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Brenier, Y., Jaffré, J.: Upstream differencing for multiphase flow in reservoir simulation. SIAM J. Numer. Anal. 28(3), 685–696 (1991)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Adimurthi, Jaffré, J., Veerappa Gowda, G.D.: Godunov-type methods for conservation laws with a flux function discontinuous in space. SIAM J. Numer. Anal. 42(1), 179–208 (2004)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Todd, M., O’Dell, P., Hirasaki, G.: Methods for increased accuracy in numerical reservoir simulators. SPE J 12(6), 515–530 (1972)Google Scholar
  10. 10.
    Brand, C., Heinemann, J.E., Aziz, K.: The grid orientation effect in reservoir simulation. In: SPE Symposium on Reservoir Simulation (1991). SPE 21228Google Scholar
  11. 11.
    Kozdon, J., Mallison, B., Gerritsen, M.: Robust multi-D transport schemes with reduced grid orientation effects. Transp. Porous Media 78(1), 47–75 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kozdon, J., Mallison, B., Gerritsen, M.: Multidimensional upstream weighting for multiphase transport in porous media. Comput. Geosci. 15(3), 399–419 (2011)CrossRefGoogle Scholar
  13. 13.
    Shubin, G., Bell, J.: An analysis of the grid orientation effect in numerical simulation of miscible displacement. Comput. Methods Appl. Mech. Eng. 47(1–2), 47–71 (1984)MATHCrossRefGoogle Scholar
  14. 14.
    Edwards, M.G.: Higher-resolution hyperbolic-coupled-elliptic flux-continuous CVD schemes on structured and unstructured grids in 2-D. Int. J. Numer. Methods Fluids 51(9–10), 1059–1077 (2006)MATHCrossRefGoogle Scholar
  15. 15.
    Edwards, M.G.: Higher-resolution hyperbolic-coupled-elliptic flux-continuous cvd schemes on structured and unstructured grids in 3-D. Int. J. Numer. Methods Fluids 51(9–10), 1079–1085 (2006)MATHCrossRefGoogle Scholar
  16. 16.
    Lamine, S., Edwards, M.G.: Multidimensional upwind convection schemes for flow in porous media on structured and unstructured quadrilateral grids. J. Comput. Appl. Math. 234(7), 2106–2117 (2010)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Kozdon, J., Mallison, B., Gerritsen, M., Chen, W.: Multi-D upwinding for multi phase transport in porous media. SPE J (2012). doi:10.2118/119190-MS MATHGoogle Scholar
  18. 18.
    Hurtado, F., Maliska, C., da Silva, A., Cordazzo, J.: A quadrilateral element-based finite-volume formulation for the simulation of complex reservoirs. In: SPE Latin American and Caribbean Petroleum Engineering Conference, SPE 107444 (2007)Google Scholar
  19. 19.
    Edwards, M.: Higher dimensional wave-oriented upwind schemes with minimal cross-wind diffusion. In: SPE Reservoir Simulation Symposium, SPE 79689 (2003)Google Scholar
  20. 20.
    Edwards, M.: Multidimensional wave-oriented upwind schemes with reduced cross-wind diffusion for flow in porous media. Int. J. Numer. Methods Fluids 67(1) 33–57 (2011)MATHCrossRefGoogle Scholar
  21. 21.
    Lamine, S., Edwards, M.G.: Higher order multidimensional upwind convection schemes for flow in porous media on structured and unstructured quadrilateral grids. SIAM J. Sci. Comput. 32(3), 1119–1139 (2010)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Lamine, M., Edwards, M.: Multidimensional cell based schemes for hyperbolic systems with gravity in porous media on structured and unstructured grids. In: Proc. of SPE Reservoir Symulation Symposium, SPE 140902 (2011)Google Scholar
  23. 23.
    Aavatsmark, I., Eigestad, G.T., Mallison, B., Nordbotten, J.M.: A compact multipoint flux approximation method with improved robustness. Numer. Methods Partial Differ. Equ. 24(5), 1329–1360 (2008)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Friis, H., Edwards, M., Mykkeltveit, J.: Symmetric positive definite flux-continuous full-tensor finite-volume schemes on unstructured cell-centered triangular grids. SIAM J. Sci. Comput. 31(2), 1192–1220 (2008)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Klausen, R.A., Radu, F., Eigestad, G.: Convergence of MPFA on triangulations and for Richards’ equation. Int. J. Numer. Methods Fluids 58(9), 1327–1351 (2008)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Lamine, S., Edwards, M.G.: Higher order multidimensional wave oriented upwind schemes for flow in porous media on unstructured grids. In: Proc. of SPE Reservoir Simulation Symposium, SPE 119187 (2009)Google Scholar
  27. 27.
    Klausen, R.A., Winther, R.: Convergence of multipoint flux approximations on quadrilateral grids. Numer. Methods Partial Differ. Equ. 22(6), 1438–1454 (2006)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Acs, G., Doleschall, S., Farkas, E.: General purpose compositional model. SPE J. 25(4), 543–553, SPE 10515 (1985)Google Scholar
  29. 29.
    Crandall, M.G., Majda, A.: Monotone difference approximations for scalar conservation laws. Math. Comput. 34(149), 1–21 (1980).MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Roe, P.L., Sidilkover, D.: Optimum positive linear schemes for advection in two and three dimensions. SIAM J. Numer. Anal. 29(6), 1542–1568 (1992)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Van Ransbeeck, P., Hirsch, C.: A general analysis of 2D/3D multidimensional upwind convection schemes. Notes Numer. Fluid Mech. 57, 251–304 (1997)Google Scholar
  32. 32.
    Schneider, G., Raw, M.: A skewed, positive influence coefficient upwinding procedure for control-volume-based finite-element convection-diffusion computation. Numer. Heat Transf, A Appl. 9(1), 1–26 (1986)Google Scholar
  33. 33.
    Koren, B.: Low-diffusion rotated upwind schemes, multigrid and defect corrections for steady, multidimensional Euler flows. Int. Ser. Numer. Math. 98, 265–276 (1991)MathSciNetGoogle Scholar
  34. 34.
    Corey, A.: The interrelation between gas and oil relative permeabilities. Prod. Mon. 19(1), 38–41 (1954)Google Scholar
  35. 35.
    Chonga, E., Syihabb, Z., Putrac, E., Hidayatid, D.T., Schechter, D.S.: A new grid block system for reducing grid orientation effect. Pet. Sci. Technol. 25(11), 1473–1492 (2007)CrossRefGoogle Scholar
  36. 36.
    Aavatsmark, I., Barkve, T., Mannseth, T.: Control–volume discretization methods for 3D quadrilateral grids in inhomogeneous, anisotropic reservoirs. SPE J. 3(2), 143–154, SPE 38000 (1998)Google Scholar
  37. 37.
    Pal, M., Edwards, M.G.: Quasimonotonic continuous darcy-flux approximation for general 3D grids of any element type. In: Proc. of SPE Reservoir Symulation Symposium, SPE 106486 (2007)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Eirik Keilegavlen
    • 1
  • Jeremy E. Kozdon
    • 2
  • Bradley T. Mallison
    • 3
  1. 1.Department of MathematicsUniversity of BergenBergenNorway
  2. 2.Geophysics DepartmentStanfordUSA
  3. 3.Chevron ETCSan RamonUSA

Personalised recommendations