Skip to main content
Log in

Comparing the adaptive Gaussian mixture filter with the ensemble Kalman filter on synthetic reservoir models

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript


Over the last years, the ensemble Kalman filter (EnKF) has become a very popular tool for history matching petroleum reservoirs. EnKF is an alternative to more traditional history matching techniques as it is computationally fast and easy to implement. Instead of seeking one best model estimate, EnKF is a Monte Carlo method that represents the solution with an ensemble of state vectors. Lately, several ensemble-based methods have been proposed to improve upon the solution produced by EnKF. In this paper, we compare EnKF with one of the most recently proposed methods, the adaptive Gaussian mixture filter (AGM), on a 2D synthetic reservoir and the Punq-S3 test case. AGM was introduced to loosen up the requirement of a Gaussian prior distribution as implicitly formulated in EnKF. By combining ideas from particle filters with EnKF, AGM extends the low-rank kernel particle Kalman filter. The simulation study shows that while both methods match the historical data well, AGM is better at preserving the geostatistics of the prior distribution. Further, AGM also produces estimated fields that have a higher empirical correlation with the reference field than the corresponding fields obtained with EnKF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Aanonsen, S.I., Nævdal, G., Oliver, D.S., Reynolds, A.C., Vallès, B.: Ensemble Kalman filter in reservoir engineering—a review. SPE J. 14(3), 393–412 (2009)

    Google Scholar 

  2. Anderson, J.L.: Exploring the need for localization in ensemble data assimilation using hierarchical ensemble filter. Physica D 230, 99–111 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Apte, A., Hairer, M., Stuart, A.M., Voss, J.: Sampling the posterior: an approach to non-Gaussian data assimilation. Physica D 230, 50–64 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bengtsson, T., Snyder, C., Nychka, D.: Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res. 108, 35–45 (2003)

    Article  Google Scholar 

  5. Bengtsson, T., Bickel, P., Li, B.: Curse-of-dimensionality revisited: collapse of particle filter in very large scale systems. Probab. Stat. 2, 316–334 (2008)

    MathSciNet  Google Scholar 

  6. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10, 197–208 (2000)

    Article  Google Scholar 

  7. Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Practice. Springer, New York (2001)

    MATH  Google Scholar 

  8. Evensen, G.: Data Assimilation: The Ensemble Kalman Filter. Springer, New York (2007)

    MATH  Google Scholar 

  9. Floris, F.J.T., Bush, M.D., Cuypers, M., Roggero, F., Syversveen, A.R.: Methods for quantifying the uncertainty of production forecasts: a comparative study. Pet. Geosci. 7, 87–96 (2001)

    Article  Google Scholar 

  10. Fu, J.: A Markov Chain Monte Carlo Method for Inverse Stochastic Modeling and Uncertainty Assessment. Ph.D. thesis, Universidad Politecninca de Valencia, Spain (2007)

  11. Furrer, R., Bengtsson, T.: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J. Multivar. Anal. 98(2), 227–255 (2007). ISSN 0047-259X. doi:10.1016/j.jmva.2006.08.003

    Article  MathSciNet  MATH  Google Scholar 

  12. Hoteit, I., Pham, D.-T., Triantafyllou, G., Korres, G.: A new approximative solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography. Mon. Weather Rev. 136, 317–334 (2008)

    Article  Google Scholar 

  13. Kong, A., Liu, J., Wong, W.: Sequential imputations and Bayesian missing data problems. J. Am. Stat. Assoc. 89(425), 278–288 (1994)

    Article  MATH  Google Scholar 

  14. Lorentzen, R.J., Nævdal, G., Vallès, B., Berg, A.M., Grimstad, A.-A.: Analysis of the ensemble Kalman filter for estimation of permeability and porosity in reservoir models. In: SPE Annual Technical Conference and Exhibition, Dallas, Texas, 9–12 October 2005. Paper SPE96375 (2005)

  15. Mandel, J., Beezley, J.D.: An ensemble Kalman-particle predictor–corrector filter for non-Gaussian data assimilation. In: ICCS 2009: Proceedings of the 9th International Conference on Computational Science, pp. 470–478. Springer, Berlin. ISBN 978-3-642-01972-2 (2009)

    Chapter  Google Scholar 

  16. Myrseth, I., Omre, H.: Hierarchical ensemble Kalman filter. Spe J. 2 569–580. doi:10.2118/125851-PA (2010)

    MATH  Google Scholar 

  17. PunqS3—website: (2011)

  18. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer, New York (2004)

    MATH  Google Scholar 

  19. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1986)

    MATH  Google Scholar 

  20. Skjervheim, J.-A., Aanonsen, S.I., Ruud, B.O., Evensen, G., Johansen, T.A.: Estimating lithology and other reservoir properties from 4D seismic data using the ensemble Kalman filter. Included as a part of J.-A. Skjervheim, Continuous updating of a coupled reservoir-seismic model using an ensemble Kalman filter technique. Ph.D. thesis, University of Bergen, Norway (2007)

  21. Stordal, A., Karlsen, H., Nævdal, G., Skaug, H., Vallès, B.: Bridging the ensemble Kalman filter and particle filters. Comput. Geosci. 15, 293–305 (2011)

    Article  MATH  Google Scholar 

  22. Stordal, A.S.: Sequential Data Assimilation in High Dimensional Nonlinear Systems. PhD thesis, University of Bergen (2011)

  23. Zhang, Y., Oliver, D.S.: Improving the ensemble estimate of the Kalman gain by bootstrap sampling. Math. Geosci. 42(3), 327–345. doi:10.1007/s11004-010-9267-8 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Andreas S. Stordal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stordal, A.S., Valestrand, R., Karlsen, H.A. et al. Comparing the adaptive Gaussian mixture filter with the ensemble Kalman filter on synthetic reservoir models. Comput Geosci 16, 467–482 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: