Skip to main content
Log in

Finite-difference algorithm with local time-space grid refinement for simulation of waves

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

This paper presents a new approach to a local time-space grid refinement for a staggered-grid finite-difference simulation of waves. The approach is based on approximation of a wave equation at the interface where two grids are coupled. As no interpolation or projection techniques are used, the finite-difference scheme preserves second order of convergence. We have proved that this approach is low-reflecting, the artificial reflections are about 10 − 4 of an incident wave. We have also shown that if a successive refinement is applied, i.e. temporal and spatial steps are refined at different interfaces, this approach is stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid, I. low frequency range and II. high frequency range. J. Acoust. Soc. Am. 28, 168–191 (1956)

    Article  MathSciNet  Google Scholar 

  2. Backus, G.E.: Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res. 67(11), 4427–4440 (1962)

    Article  Google Scholar 

  3. Schoenberg, M., Muir, F.: A calculus for finely layered anisotropic media. Geophysics 54(5), 581–589 (1989)

    Article  Google Scholar 

  4. Hudson, J.A.: Elastic moduli of a cracked solid. Math. Proc. Camb. Philos. Soc. 88, 371–384 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hudson, J.: Wave speeds and attenuation of elastic waves in material containing cracks. Geophys. J. R. Astron. Soc. 64, 133–150 (1981)

    MATH  Google Scholar 

  6. Kachanov, M.: Effective elastic properties of cracked solids: critical review of some basic concepts. Appl. Mech. Rev. 45, 304–335 (1992)

    Article  Google Scholar 

  7. Vavakin, A.S., Salganik, R.L.: Effective elastic characteristics of bodies with isolated cracks, cavities and rigid nonhomogeneities. Mekhanika Tverdogo Tela 13, 95–107 (1978, In Russian)

    Google Scholar 

  8. Berryman, J.G.: Single-scattering approximation for coefficients in Biot’s equations of poroelasticity. J. Acoust. Soc. Am. 91, 551–571 (1992)

    Article  Google Scholar 

  9. Hu, Y., McMechan, G.: Sensitivity of three-component 3D finite-difference elastic seismic modeling to inclusion parameters in HTI and TTI media with high inclusion density. Geophysics 75(2), T49–T61 (2010)

    Article  Google Scholar 

  10. Schubnel, A., Gueguen, Y.: Dispersion and anisotropy of elastic waves in cracked rocks. J. Geophys. Res.-Solid Earth 108, 2101–2116 (2003)

    Article  Google Scholar 

  11. Grechka, V., Kachanov, M.: Effective elasticity of rocks with closely spaced and intersecting cracks. Geophysics 71(3), D85–D91 (2006)

    Article  Google Scholar 

  12. Zhang, Y., Sayers, C.M., Adachi, J.I.: The use of effective medium theories for seismic wave propagation and fluid flow in fractured reservoirs under applied stress. Geophys. J. Int. 177(1), 205–221 (2009)

    Article  Google Scholar 

  13. Willis, M.E., Burns, D.R., Rao, R., Minsley, B., Toksoz, M.N., Vetri, L.: Spatial orientation and distribution of reservoir fractures from scattered seismic energy. Geophysics 71(5), O43–O51 (2006)

    Article  Google Scholar 

  14. Pozdnyakov, V., Tcheverda, V.: Reliable imaging of subseismic objects by means of focusing of seismic scattering energy. In: EAGE 69th Conference and Exhibition, p. P273 (2007)

  15. Fomel, S., Landa, E., Taner, T.: Poststack velocity analysis by separation and imaging of seismic diffractions. Geophysics 72, U89–U94 (2007)

    Article  Google Scholar 

  16. Sneider, R.: The theory of coda wave interferometry. Pure Appl. Geophys. 163, 455–473 (2006)

    Article  Google Scholar 

  17. Nihei, K.T., Rector, J.W., Myer, L.R., W.Cook, N.G.: Numerical investigation of fracture-induced seismic anisotropy. In: Expanded Abstracts of SEG Annual Meeting, pp. 960–963 (1997)

  18. Kruger, O.S., Saenger, E.H., Oates, S.J., Shapiro, S.A.: A numerical study on reflection coefficients of fractured media. Geophysics 72(4), D61–D67 (2007)

    Article  Google Scholar 

  19. Virieux, J.: P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics 51(4), 889–901 (1986)

    Article  Google Scholar 

  20. Kim, S.I., Hoefer, W.J.R.: A local mesh refinement algorithm for the time-domain finite-difference method to solve Maxvell’s equations. IEEE Trans. Microwave Theory Tech. 38, 812–815 (1990)

    Article  Google Scholar 

  21. Collino, F., Fouquet, T., Joly, P.: Analyse numerique d’une methode de raffinement de maillage espace-temps pour l’equation des ondes. INRIA Rapprot de recherche 3474 (1998). http://hal.inria.fr/inria-00073215/en/

  22. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53(3), 484–512 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  23. Berger, M.J., LeVeque, R.J.: Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems. SIAM J. Numer. Anal. 35(6), 2298–2316 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Calhoun, D.A., Helzel, C., LeVeque, R.J.: Logically rectangular grids and finite volume methods for pdes in circular and spherical domains. SIAM Rev. 50(4), 723–752 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Berger, M.J., Calhoun, D.A., Helzel, C., LeVeque, R.J.: Logically rectangular finite volume methods with adaptive refinement on the sphere. Philos. Trans. - Royal Soc., A Math. Phys. Eng. Sci. 367(1907), 4483–4496 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Dumbser, M., Kaser, M., Toro, E.F.: An arbitrary high-order discontinuous galerkin method for elastic waves on unstructured meshes V. Local time stepping and p-adaptivity. Geophys. J. Int. 171(2), 695–717 (2007)

    Article  Google Scholar 

  27. Castro, C.E., Kaser, M., Toro, E.F.: Space-time adaptive numerical methods for geophysical applications. Philos. Trans. - Royal Soc., A Math. Phys. Eng. Sci. 367(1907), 4613–4631 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Halpern, L.: Local space-time refinement for the one-dimentional wave equation. J. Comput. Acoust. 13(3), 547–586 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Collino, F., Fouquet, T., Joly, P.: A conservative space-time mesh refinement method for the 1-D wave equation. part I: Construction. Numer. Math. 95, 197–221 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Collino, F., Fouquet, T., Joly, P.: A conservative space-time mesh refinement method for the 1-D wave equation. part II: analysis. Numer. Math. 95, 223–251 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Joly, P., Rodriguez, J.: An error analysis of conservative space-time mesh refinement methods for the one-dimensional wave equation. SIAM J. Numer. Anal. 43(2), 825–859 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Diaz, J., Grote, M.J.: Energy conserving explicit local time stepping for second-order wave equations. SIAM J. Sci. Comput. 31(3), 1985–2014 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Baldassari, C., Barucq, H., Calandra, H., Diaz, J.: Numerical performances of a hybrid local-time stepping strategy applied to the reverse time migration. Geophys. Prospect. (2011). doi:10.1111/j.1365-2478.2011.00975.x

  34. Berenger, J.P.: A Huygens subgridding for the FDTD method. IEEE Trans. Antenn. Propag. 54, 3797–3804 (2006)

    Article  MathSciNet  Google Scholar 

  35. Berenger, J.P.: Extension of the FDTD Huygens subgridding algorithm to two dimensions. IEEE Trans. Antenn. Propag. 57, 3860–3867 (2009)

    Article  Google Scholar 

  36. Berenger, J.P.: The Huygens subgridding for the numerical solution of the Maxwell equations. J. Comput. Phys. 230(14), 5635–5659 (2011). doi:10.1016/j.jcp.2011.03.046

    Article  MATH  MathSciNet  Google Scholar 

  37. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)

    Article  MATH  Google Scholar 

  38. Lisitsa, V., Vishnevskiy, D.: Lebedev scheme for the numerical simulation of wave propagation in 3D anisotropic elasticity. Geophys. Prospect. 58(4), 619–635 (2010)

    Article  Google Scholar 

  39. Davydycheva, S., Druskin, V., Habashy, T.: An efficient finite-difference scheme for electromagnetic logging in 3D anisotropic inhomogeneous media. Geophysics 68(5), 1525–1535 (2003)

    Article  Google Scholar 

  40. Saenger, E.H., Gold, N., Shapiro, S.A.: Modeling the propagation of the elastic waves using a modified finite-difference grid. Wave Motion 31, 77–92 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  41. Cohen, G.: Higher-Order Numerical Methods for Transient Wave Equations. Scientific Computation, Springer-Verlag, Berlin (2002)

    MATH  Google Scholar 

  42. Lisitsa, V., Podgornova, O., Tcheverda, V.: On the interface error analysis for finite difference wave simulation. Comput. Geosci. 14(4), 769–778 (2010)

    Article  MATH  Google Scholar 

  43. Kreiss, H.O.: Initial boundary value problems for hyperbolic systems. Comm. Pure Appl. Math. 23, 277–298 (1970)

    Article  MathSciNet  Google Scholar 

  44. Sakamoto, R.: Mixed problems for hyperbolic equations. I. Energy inequalities. J. Math. Kyoto Univ. 10, 349–373 (1970)

    MATH  MathSciNet  Google Scholar 

  45. Sakamoto, R.: Mixed problems for hyperbolic equations. II. Existence theorems with zero initial datas and energy inequalities with initial datas. J. Math. Kyoto Univ. 10, 403–417 (1970)

    MATH  MathSciNet  Google Scholar 

  46. Berger, M.: Stability of interfaces with mesh refinement. Math. Comput. 45(172), 301–318 (1985)

    Article  MATH  Google Scholar 

  47. Bernth, H., Chapman, C.: A comparison of the dispersion relations for anisotropic elastodynamic finite-difference grids. Geophysics 76(3), WA43–WA50 (2011)

    Article  Google Scholar 

  48. Moczo, P., Kristek, J., Halada, L.: 3D fourth-order staggered-grid finite-difference schemes: Stability and grid dispersion. Bull. Seismol. Soc. Am. 90(3), 587–603 (2000)

    Article  MathSciNet  Google Scholar 

  49. Sei, A.: A family of numerical schemes for the computation of elastic waves. SIAM J. Sci. Comput. 16(4), 898–916 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  50. Alford, R.M., Kelly, K.R., Boore, D.M.: Accuracy of finite-difference modeling of the acoustic wave equation. Geophysics 39(6), 834–842 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Lisitsa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisitsa, V., Reshetova, G. & Tcheverda, V. Finite-difference algorithm with local time-space grid refinement for simulation of waves. Comput Geosci 16, 39–54 (2012). https://doi.org/10.1007/s10596-011-9247-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-011-9247-1

Keywords

Mathematics Subject Classifications (2010)

Navigation