Computational Geosciences

, 15:755 | Cite as

Analytical model for screening potential CO2 repositories

  • Roland T. Okwen
  • Mark T. Stewart
  • Jeffrey A. Cunningham
Original Paper


Assessing potential repositories for geologic sequestration of carbon dioxide using numerical models can be complicated, costly, and time-consuming, especially when faced with the challenge of selecting a repository from a multitude of potential repositories. This paper presents a set of simple analytical equations (model), based on the work of previous researchers, that could be used to evaluate the suitability of candidate repositories for subsurface sequestration of carbon dioxide. We considered the injection of carbon dioxide at a constant rate into a confined saline aquifer via a fully perforated vertical injection well. The validity of the analytical model was assessed via comparison with the TOUGH2 numerical model. The metrics used in comparing the two models include (1) spatial variations in formation pressure and (2) vertically integrated brine saturation profile. The analytical model and TOUGH2 show excellent agreement in their results when similar input conditions and assumptions are applied in both. The analytical model neglects capillary pressure and the pressure dependence of fluid properties. However, simulations in TOUGH2 indicate that little error is introduced by these simplifications. Sensitivity studies indicate that the agreement between the analytical model and TOUGH2 depends strongly on (1) the residual brine saturation, (2) the difference in density between carbon dioxide and resident brine (buoyancy), and (3) the relationship between relative permeability and brine saturation. The results achieved suggest that the analytical model is valid when the relationship between relative permeability and brine saturation is linear or quasi-linear and when the irreducible saturation of brine is zero or very small.


Carbon sequestration Plume migration Pressure Buoyancy effect 


  1. 1.
    Altunin, V.: Thermophysical Properties of Carbon Dioxide. Publishing House of Standards, Moscow, p. 551 (1975)Google Scholar
  2. 2.
    Bachu, S., Adams, J.J.: Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution. Energy Convers. Manag. 44, 3151–3175 (2003)CrossRefGoogle Scholar
  3. 3.
    Bachu, S., Nordbotten, J., Celia, M.: Evaluation of the spread of acid gas plumes injected in deep saline aquifers in western Canada as an analogue for CO2 injection in continental sedimentary basins. The Princeton Papers at Vancouver (I.D. No. 12) (2004)Google Scholar
  4. 4.
    Benson, S., Dorchak, T., Jacobs, G., Ekmann, J., Bishop, J., Grahame, T.: Carbon dioxide reuse and sequestration: the state of the art today. In: Catania, P. (ed.) Energy 2000: State of the Art Balaban International Science Services. L’Aquila, Italy (2000)Google Scholar
  5. 5.
    Bruant, R., Guswa, A., Celia, M., Peters, C.: Safe storage of carbon dioxide in deep saline aquifers. Environ. Sci. Technol. 36(11), 240A–245A (2002)CrossRefGoogle Scholar
  6. 6.
    Celia, M., Nordbotten, J., Court, B., Dobossy, M., Bachu, S.: Field-scale application of a semi-analytical model for estimation of CO2 and brine leakage along old wells. Int. J. Greenhouse Gas Control 5, 257–269. doi:10.1016/j.ijggc.2010.10.005 (2010)CrossRefGoogle Scholar
  7. 7.
    Cooper, H., Jacob, C.: A generalized graphical method for evaluating formation constants and summarizing well field history. Trans. Am. Geophys. Union 27, 526–534 (1946)Google Scholar
  8. 8.
    Corey, A.: The interrelation between gas and oil relative permeabilities. Prod. Mon. 19:38–41 (1954)Google Scholar
  9. 9.
    Doughty, C., Pruess, K.: A similarity solution for two-phase water, air, and heat flow near a linear heat source in a porous medium. Geophys. Res. 97(B2), 1821–1838 (1992)CrossRefGoogle Scholar
  10. 10.
    Doughty, C., Pruess, K.: Modeling supercritical CO2 injection in heterogeneous porous media. Vadose Zone J. 3(3), 837–847 (2004)CrossRefGoogle Scholar
  11. 11.
    Ennis-King, J., Paterson, L.: Engineering aspects of geological sequestration of carbon dioxide. In: Asia Pacific Oil and Gas Conference and Exhibition, Melbourne, Australia, 8–10 October, SPE and CSIRO Petroleum, vol. SPE-77809 (2002)Google Scholar
  12. 12.
    Falkowski, P., Scholes, R.J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Hogberg, P., Linder, S., Mackenzie, F.T., Moore III, B., Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., Steffen, W.: The global carbon cycle: a test of our knowledge of earth as a system. Science 290, 291–296 (2000)CrossRefGoogle Scholar
  13. 13.
    Fjær, E., Holt, R., Horsrud, P., Raaen, A., Risnes, R.: Petroleum Related Rock Mechanics. No. 33 in Developments in Petroleum Science. Elsevier, Amsterdam (1992)Google Scholar
  14. 14.
    Forward, K.: Statoilhydro begins CO2 injection at Snøhvit. Carbon capture journal: transport and storage news, p. 24, Issue 3. (2008)
  15. 15.
    Fuller, R., Prevost, J., Piri, M.: Three-phase equilibrium and partitioning calculations for CO2 sequestration in saline aquifers. J. Geophys. Res. 111(B06207), 1–11 (2006). doi:10.1029/2005JB003618 Google Scholar
  16. 16.
    García, J.E.: Fluid dynamics of carbon dioxide disposal in saline aquifers. Doctoral dissertation, University of California, Berkeley (2003)Google Scholar
  17. 17.
    van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)CrossRefGoogle Scholar
  18. 18.
    Hesse, M., Tchelepi, H., Cantwell, B., Orr, F. Jr., Friedmann, J.: Gravity currents in horizontal porous layers: transition from early to late self-similarity. J. Fluid Mech. 577, 363–383 (2007)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Hesse, M., Orr, F. Jr., Tchelepi, H.: Gravity currents with residual trapping. J. Fluid Mech. 611 36–60 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Hitchon, B.: Aquifer Disposal of Carbon Dioxide. Geoscience, Sherwood Park (1996)Google Scholar
  21. 21.
    IEA: Prospects for CO2 Capture and storage. Tech. rep., International Environmental Agency, Paris, France (2004)Google Scholar
  22. 22.
    IPCC: IPCC special report on carbon dioxide capture and storage. In: Metz, B., Davidson, O., de Coninck, H.C., Loos, M., Meyer, L.A. (eds.) Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Report, Intergovernmental Panel on Climate Change, Cambridge (2005)Google Scholar
  23. 23.
    IPCC: Climate change 2007: the physical science basis. Fourth Assessment Report. Report, Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva (2007)Google Scholar
  24. 24.
    Juanes, R., MacMinn, C., Szulczewski, M.: The footprint of the CO2 plume during carbon dioxide storage in saline aquifers: storage efficiency for capillary trapping at the basin scale. Transp. Porous Media 82, 19–30 (2009)CrossRefGoogle Scholar
  25. 25.
    Keeling, C., Whorf, T., Wahlen, M.: Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 1–24 (1995)CrossRefGoogle Scholar
  26. 26.
    Kopp, A., Class, H., Helmig, R.: Investigations on CO2 storage capacity in saline aquifers—part 2: estimation of storage capacity coefficients. Int. J. Greenhouse Gas Control 3, 277–287 (2009)CrossRefGoogle Scholar
  27. 27.
    Kristian, J., Kovscek, A., Orr, F.: Increasing CO2 storage in oil recovery. Energy Convers. Manag. 46, 293–311 (2005)CrossRefGoogle Scholar
  28. 28.
    Müller, N., Qi, R., Mackie, E., Pruess, K., Blunt, J.: CO2 injection impairment due to halite precipitation. Energy Procedia 1, 3507–3514 (2009). doi:10.1016/j.egypro.2009.02.143 CrossRefGoogle Scholar
  29. 29.
    Nordbotten, J., Celia, M.: Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 561, 307–327 (2006)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Nordbotten, J., Dahle, H.: Impact of capillary forces on large-scale migration of CO2 storage. Water Resour. Res. 47(W02537), 1–11 (2011). doi:10.1029/2009WR008958 Google Scholar
  31. 31.
    Nordbotten, J., Celia, M., Bachu, S.: Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Transp. Porous Media 58, 339–360 (2005)CrossRefGoogle Scholar
  32. 32.
    Nordbotten, J.M., Celia, M.A., Bachu, S.: Analytical solutions for leakage rates through abandoned wells. Water Resour. Res. 40, w04204 (2004)CrossRefGoogle Scholar
  33. 33.
    Okwen, R., Stewart, M., Cunningham, J.: Analytical solution for estimating storage efficiency of geologic sequestration of CO2. Int. J. Greenhouse Gas Control 4(1), 102–107. ISSN 1750–5836 (2010). doi:10.1016/j.ijggc.2009.11.002 CrossRefGoogle Scholar
  34. 34.
    O’Sullivan, M.: A similarity method for geothermal well test analysis. Water Resour. Res. 17(2), 390–398 (1981)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Pruess, K.: On vaporizing water flow in hot sub-vertical rock fractures. Transp. Porous Media 28, 335–372 (1997)CrossRefGoogle Scholar
  36. 36.
    Pruess, K.: ECO2N: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and Carbon Dioxide. Lawrence Berkeley National Laboratory, Berkeley (2005)CrossRefGoogle Scholar
  37. 37.
    Pruess, K., García, J.: Multiphase flow dynamics during CO2 disposal into saline aquifers. Environ. Geol. 42, 282–295 (2002)CrossRefGoogle Scholar
  38. 38.
    Pruess, K., Müller, N.: Formation dry-out from CO2 injection into saline aquifers: 2. Analytical model for salt precipitation. Water Resour. Res. 45(w03403), 1–11 (2009). doi:10.1029/2008WR007102 Google Scholar
  39. 39.
    Pruess, K., Nordbotten, J.: Numerical simulation studies of the long-term evolution of a CO2 plume in a saline aquifer with a sloping caprock. Transp. Porous Media 1–17 (2011). doi:10.1007/s11242-011-9729-6
  40. 40.
    Pruess, K., Spycher, N.: ECO2N–A New TOUGH2 Fluid Property Module for Studies of CO2 Storage in Saline Aquifers. Lawrence Berkeley National Laboratory, Berkeley (2006)Google Scholar
  41. 41.
    Pruess, K., Oldenburg, C., Moridis, G.: TOUGH2 users’ guide, version 2.0. Manual LBNL-43134, Lawrence Berkeley National Laboratory, Berkeley (1999). Accessed 10 Jun 2007Google Scholar
  42. 42.
    Pruess, K., Oldenburg, C., Moridis, G.: Process modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery. Energy Fuels 15, 293–298 (2001)CrossRefGoogle Scholar
  43. 43.
    Pruess, K., García, J.E., Kovscek, T., Oldenburg, C., Rutqvist, J., Steefel, C., Xu, T.: Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2. Energy 29(9–10):1431–1444 (2004). doi:10.1016/ CrossRefGoogle Scholar
  44. 44.
    Ramaswami, A., Milford, J., Small, M.: Integrated Environmental Modeling—Pollutant Transport, Fate, and Risk in the Environment. Wiley, New York (2005)Google Scholar
  45. 45.
    Theis, C.V.: The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Trans. Am. Geophys. Union 2, 519–524 (1935)Google Scholar
  46. 46.
    Zoback, M.: Reservoir Geomechanics. Cambridge University Press, Cambridge. ISBN: 978-0-521-77069-9 (2007)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Roland T. Okwen
    • 1
    • 3
  • Mark T. Stewart
    • 2
  • Jeffrey A. Cunningham
    • 1
  1. 1.Department of Civil and Environmental EngineeringUniversity of South FloridaTampaUSA
  2. 2.Department of GeologyUniversity of South FloridaTampaUSA
  3. 3.Illinois State Geological Survey, Prairie Research InstituteUniversity of Illinois at Urbana-ChampaignChampaignUSA

Personalised recommendations