Skip to main content
Log in

Multimodal ensemble Kalman filtering using Gaussian mixture models

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this paper we present an extension of the ensemble Kalman filter (EnKF) specifically designed for multimodal systems. EnKF data assimilation scheme is less accurate when it is used to approximate systems with multimodal distribution such as reservoir facies models. The algorithm is based on the assumption that both prior and posterior distribution can be approximated by Gaussian mixture and it is validated by the introduction of the concept of finite ensemble representation. The effectiveness of the approach is shown with two applications. The first example is based on Lorenz model. In the second example, the proposed methodology combined with a localization technique is used to update a 2D reservoir facies models. Both applications give evidence of an improved performance of the proposed method respect to the EnKF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aanonsen, S.I., Nævdal, G., Oliver, D.S., Reynolds, A.C.: The ensemble Kalman filter in reservoir engineering—a review. SPE J. 14(3), 393–412 (2009)

    Google Scholar 

  2. Alspach, D.L., Sorenson, H.W.: Nonlinear Bayesian estimation using Gaussian sum approximation. IEEE Trans. Automat. Contr. 17, 439–448 (1972)

    Article  MATH  Google Scholar 

  3. Bengtsson, T., Snyder, C., Nychka, D.: Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res. 108(D24), 8775 (2002)

    Article  Google Scholar 

  4. Burgers, G., van Leeuwen, P.J., Evensen, G.: Analysis scheme in the ensemble Kalman filter. Mont. Weather Rev. 126, 1719–1724 (1998)

    Article  Google Scholar 

  5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  6. Dovera, L., Della Rossa, E.: Ensemble Kalman filter for Gaussian mixture models. Petroleum Geostatistics, A16, Eur. Assn. Geosci. Eng. (2007)

  7. Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99, 10143–10162 (1994)

    Article  Google Scholar 

  8. Evensen, G.: Data Assimilation—the ensemble Kalman filter. Springer, Berlin (2006)

    Google Scholar 

  9. Evensen, G., van Leeuwen, P.J.: An ensemble Kalman smoother for nonlinear dynamics. Mon. Weather Rev. 128, 1852–1867 (1999)

    Article  Google Scholar 

  10. Furrer, R., Bengtsson, T.: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J. Multivar. Anal. 98, 227–255 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gaspari, G., Cohn, S.E.: Construction of correlation functions in two and three dimensions. Q. J. Royal Meteorol. Soc. 125, 723–757 (1999)

    Article  Google Scholar 

  12. Grana, D., Della Rossa, E.: Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion. Geophysics 75(3), O21–O37 (2010)

    Article  Google Scholar 

  13. Grana, D., Della Rossa, E., D’Agosto, C.: Petrophysical properties estimation in a Crosswell study integrated with statistical rock Physics. RC3.6 Soc. Exp. Geoph. (2009)

  14. Goovaerts, P.: Geostatistics for natural resources evaluation. Oxford University Press, New York (1997)

    Google Scholar 

  15. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning. Springer, Berlin (2003)

    Google Scholar 

  16. Haugen, V.E., Evensen, G.: Assimilation of SST and SLA data into OGCM for the Indian Ocean. Ocean Dyn. 52, 133–151 (2002)

    Article  Google Scholar 

  17. Houtekamer, P.L., Mitchell, H.L., Pellerin, G., Buehner, M., Channon, L., Spacek, L., Hansen, B.: Atmospheric data assimilation with an ensemble Kalman filter: results with real observations. Mon. Weather Rev. 133, 604–620 (2005)

    Article  Google Scholar 

  18. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960)

    Google Scholar 

  19. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci 20, 130–141 (1963)

    Article  Google Scholar 

  20. Mandel, J., Cobb, L., Beezley, J.D.: On the convergence of the ensemble Kalman filter. Available at: arxiv:0901.2951v1 (2009). Accessed 20 January 2009

  21. Maybeck, P.S.: Stochastic Models, Estimation and Control, vol. 1. Academic Press, New York (1979)

    MATH  Google Scholar 

  22. Mardia, K., Kent, J., Bibby, J.: Multivariate Analysis. Academic Press, New York (1979)

    MATH  Google Scholar 

  23. Nævdal, G., Johnsen, L.M., Aanonsen, S.I., Vefring, E.H.: Reservoir monitoring and continuous model updating using ensemble Kalman filter. SPE J. 10(1), 66–74 (2005)

    Google Scholar 

  24. Pham, D.T.: Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mont. Weather Rev. 129, 1194–1207 (2001)

    Article  Google Scholar 

  25. Smith, K.W.: Cluster ensemble Kalman filter. Tellus 59A, 749–757 (2007)

    Google Scholar 

  26. Van der Merwe, R., Wan, E.A.: Gaussian mixture sigma-point particle filters for sequential probabilistic inference in dynamics state-space models. In: Proc. of the International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, Hong Kong (2003)

    Google Scholar 

  27. Zafari, M., Reynolds, A.: Assessing the uncertainty in reservoir description and performance predictions with the ensemble Kalman filter. SPE J. 12(3), 382–391 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Dovera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dovera, L., Della Rossa, E. Multimodal ensemble Kalman filtering using Gaussian mixture models. Comput Geosci 15, 307–323 (2011). https://doi.org/10.1007/s10596-010-9205-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-010-9205-3

Keywords

Navigation