Abstract
This study investigates the relation between two common localisation methods in ensemble Kalman filter (EnKF) systems: covariance localisation and local analysis. Both methods are popular in large-scale applications with the EnKF. The case of local observations with non-correlated errors is considered. Both methods are formulated in terms of tapering of ensemble anomalies, which provides a framework for their comparison. Based on analytical considerations and experimental evidence, we conclude that in practice the two methods should yield very similar results, so that the choice between them should be based on other criteria, such as numerical effectiveness and scalability.
This is a preview of subscription content, access via your institution.
References
Anderson, J.L.: A local least squares framework for ensemble filtering. Mon. Weather Rev. 131, 634–642 (2003)
Anderson, J.L.: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter. Physica D 230, 99–111 (2007)
Bishop, C.H., Hodyss, D.: Flow-adaptive moderation of spurious ensemble correlations and its use in ensemble-based data assimilation. Q. J. Royal Meteorol. Soc. 133, 2029–2044 (2007)
Bishop, C.H., Hodyss, D.: Ensemble covariances adaptively localized with ECO-RAP. part 1: tests on simple error models. Tellus 61A, 84–96 (2009)
Bishop, C.H., Etherton, B., Majumdar, S.J.: Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects. Mon. Weather Rev. 129, 420–436 (2001)
Burgers, G., van Leeuwen, P.J., Evensen, G.: Analysis scheme in the ensemble Kalman filter. Mon. Weather Rev. 126, 1719–1724 (1998)
Cross, M.: Introduction to Chaos. Available at: http://www.cmp.caltech.edu/~mcc/Chaos_Course/Outline.html (2009)
Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. J. Geophys. Res. 99, 10143–10162 (1994)
Evensen, G.: The Ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 53, 343–367 (2003). doi:10.1007/sl10236-003-0036-9
Evensen, G.: Data Assimilation: the Ensemble Kalman Filter, 2nd edn. Springer, Dordrecht (2009)
Gaspari, G., Cohn, S.E.: Construction of correlation functions in two and three dimensions. Q. J. Royal Meteorol. Soc. 125, 723–757 (1999)
Hamill, T.M., Whitaker, J.S.: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Weather Rev. 129, 2776–2790 (2001)
Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge, MA (1985)
Houtekamer, P.L., Mitchell, H.L.: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 129, 123–137 (2001)
Hunt, B.R., Kostelich, E.J., Szunyogh, I.: Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter. Physica D 230, 112–126 (2007)
Oke, P.R., Sakov, P., Corney, S.P.: Impacts of localisation in the EnKF and EnOI: experiments with a small model. Ocean Dyn. 57, 32–45 (2007). doi:10.1007/sl10236-006-0088-8
Ott, E., Hunt, B.R., Szunyogh, I., Zimin, A.V., Kostelich, E.J., Corazza, M., Kalnay, E., Patil, D.J., Yorke, J.A.: A local ensemble Kalman filter for atmospheric data assimilation. Tellus 56A, 415–428 (2004)
Sakov P, Oke P.R.: A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square root filters. Tellus 60A, 361–371 (2008)
Sakov, P., Oke, P.R.: Implications of the form of the ensemble transformations in the ensemble square root filters. Mon. Weather Rev. 136, 1042–1053 (2008)
Tippett, M.K., Anderson, J.L., Bishop, C.H., Hamill, T.M., Whitaker, JS.: Ensemble square root filters. Mon. Weather Rev. 131,1485–1490 (2003)
Whitaker, J.S., Hamill, T.M.: Ensemble data assimilation without perturbed observations. Mon. Weather Rev. 130, 1913–1924 (2002)
Whitaker, J.S., Hamill, T.M., Wei, X., Song, Y., Toth, Z.: Ensemble data assimilation with the NCEP global forecast system. Mon. Weather Rev. 136, 463–482 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sakov, P., Bertino, L. Relation between two common localisation methods for the EnKF. Comput Geosci 15, 225–237 (2011). https://doi.org/10.1007/s10596-010-9202-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10596-010-9202-6
Keywords
- Data assimilation
- Ensemble Kalman filter
- EnKF
- Localisation
- Covariance localisation
- Local analysis